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Abstract.

Modularity of ontologies has received increased attention in the past. For ontologies,
methods for extracting a module and also methods for decomposing an ontology into
several parts were developed. So far, many and also successful module extraction meth-
ods have been investigated, whereas only a few and often less successful decomposition
methods have been investigated. In this thesis, we investigate the decomposition method
“Partitioning using E-connections”, which was first introduced by Cuenca Grau et al.
(2005, 2006). During our investigation of the existing notation, algorithm, and imple-
mentation, we developed a simplified notation and extended it to the full OWL 2, with
the exception of the universal role. In this thesis, we develop a new, conceptually much
simpler algorithm that runs in a linear rather than the original quadratic runtime. The
algorithm is deterministic and allows simplified proofs of correctness and maximality. To
test partitioning using E-connections, we implement the algorithm in Java and evaluate
it on a large and diverse established corpus of biomedical ontologies. It turns out that
the algorithm is fast in practice, but for “usable” decompositions, one needs heuristics in
most cases, which we develop and investigate in this thesis. Furthermore, we investigate
the transfer of partitioning using E-connections to other fragments of First-Order Logic.
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Chapter 1

Motivation

Modularity has become an essential paradigm in software development over the past
few decades. This paradigm has received increased attention for the development of
ontologies in the past as witnessed by the WoMO1/WoMoCoE2 workshop series and a
monograph on modular ontologies (Stuckenschmidt et al., 2009).

There are several advantages to modularity in the development of ontologies: modular
ontologies are easier to maintain, to comprehend, and to reason over. The extraction of
modules can also allow the reuse of a specific part of an ontology if only a specific part
of the ontology is of interest.

Decomposition is the task of splitting ontologies into several parts and therefore
making them modular. Decomposition can also be used to help to extract a single
module (Klinov et al., 2012). Several decomposition methods have been developed:
Structure-based partitioning (Stuckenschmidt and Schlicht, 2009), partitionings based on
E-connections (Cuenca Grau et al., 2005, 2006) and atomic decomposition (Del Vescovo
et al., 2011). Only the latter two provide strong logical guarantees important for the
scenarios mentioned above.

In this thesis, we will cover partitionings based on E-connections (from now on:
E-partitions). This procedure was developed by Cuenca Grau et al. (2005, 2006). An E-
partition is a partitioning of the axioms that complies with the E-connections framework.
The axioms are partitioned into several subsets that are connected by edges that represent
“semantic links”.

The usage of the E-connections framework gives us strong logical guarantees, e.g.
(certain combinations of) the components are encapsulating modules of the input ontol-
ogy (Cuenca Grau et al., 2006). E-connections were first defined for abstract description
systems (ADSs) (Kutz et al., 2004). ADSs generalize DLs, modal logics, and further
formalisms (Baader et al., 2002).
E-connections for AD are a combination of heterogeneous logical theories via seman-

tic links established by a designated set of relations, called link relations. Their models
contain sets of pairwise disjoint components which are each locally interpreted. Link
relations are interpreted as relations between the different components.

Hitherto E-partitions have been only defined for SHOIQ(D). The procedure takes
an ontology and tries to find the finest possible E-connection, which is equivalent to the

1https://iaoa.org/womo/history.html
2https://womocoe19.fbk.eu/
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Chapter 1 Motivation

input ontology (under the E-connection semantics), by finding link relations among the
roles in the ontology according to the rules of E-connection.

Cuenca Grau (2005) introduced an efficient algorithm for finding the finest possible E-
connection, which is equivalent to the input ontology (under the E-connection semantics).
The algorithm builds a directed graph in which each vertex represents a component
of the partitioning. The algorithm goes through all subconcepts and assigns either an
existing or “fresh” component. It assigns an existing component whenever necessary
according to the definitions of E-connection. A “fresh” component is assigned if some
freshly identified link relation witnesses this. The assignment of concepts then induces a
partition of the ontology’s axioms.

An important notion for this procedure is safety (Cuenca Grau, 2005; Cuenca Grau
et al., 2005, 2006), which is needed for an ontology to be equivalent to its E-partition
under E-connection semantics. It coincides with domain-independence (DI) known from
first-order logic and database theory (Abiteboul et al., 1995). Although DI is undecidable
for FOL (Vardi, 1981), DI for SHOIQ(D) is decidable via locality (Cuenca Grau et al.,
2006).

Initial experiments, using an implementation for the discontinued ontology editor
Swoop 3, showed some useful E-partitions, while some of those E-partitions revealed
modeling deficiencies (Cuenca Grau et al., 2006). The results of their experiment suggest
several modeling patterns that are problematic for the use of E-partitions. One of them
is the use of a top-level concept. Another problematic modeling pattern is the extensive
use of disjoint concepts and equivalent or distinct individuals. These patterns, together
with the definition of E-connection, can result in a coarse E-partition, by forcing many
concepts or individuals into one component. These problems could be one reason for
the limited success of E-partitions. Other reasons could be the incomplete and incorrect
implementation and the non-deterministic behavior of the algorithm.

In this thesis, we want to evaluate and examine partitioning using E-connections. The
goal is to find out whether the problems mentioned above are due to E-partitions or the
weaknesses of the existing algorithm and its implementation. Another goal was to extend
the algorithm to full OWL 2 and implement the algorithm. We want to test and evaluate
our new implementation to examine the strengths and weaknesses of E-partitions. The
last goal was to show that E-partition can be transferred to other fragments of FOL.

For our evaluation we use among others the important ontology repository BioPortal
(Noy et al., 2009). BioPortal is a corpus of many, lifelike and diverse ontologies. In this
thesis we use a snapshot from March 2017 (Matentzoglu and Parsia, 2017).

While evaluating the existing method by Cuenca Grau et al. (2005, 2006), we found a
simpler way to compute E-partitions using undirected graphs and connected components.
Instead of quadratic time like the previous algorithm, our proposed algorithm only needs
linear time. We transferred E-partitions to OWL 2, with the exception of the universal
role. If an ontology contains the universal role u, locality does no longer characterize
domain-independence. Therefore equivalence could not be guaranteed given a universal

3https://github.com/ronwalf/swoop
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role Fortunately the universal role seems to play a minor role in modeling 4.
Our proposed algorithm has the following advantages: full support of OWL 2 (with

some restrictions ensuring equivalence), a simplified notation of theory, a simpler
algorithm, that is deterministic and in linear time. Furthermore, we provide simple and
rigorous proofs.

We implemented the proposed algorithm in Java. The implementation and extensive
documentation of the implementation can be found on our Github repository5. It takes
an ontology in the owl file format as input and calculates the partitioning of the ontology.
The implementation outputs the partitioning represented as a set of ontologies in OWL
format. The implementation can visualize the components connected via link relations
in the form of a graph. We implemented a large number of unit tests for all supported
logical axioms and special cases. Additionally, we evaluated our implementation over a
representative set of ontologies and discussed the results.

Finally, we examined the transfer of E-partition to another fragment of FOL. We
transferred the notations, results and their proofs to tuple-generating dependencies
(TGDs), a fragment of FOL used in database theory. We have chosen TGDs because of
the simple transfer of our theorems and results. The notations are kept general for FOL
instead of TGD, so that they can be used to transfer E-partition to other fragments of
FOL.

In chapter 2, we will introduce standard description logic notions. Chapter 3 will
introduce the necessary notions for E-partition and discuss the difference of our notions
to the notions by (Cuenca Grau et al., 2005, 2006). Our new algorithm is described
in chapter 4. We give a proof for the correctness and maximality of the results of the
algorithm. The implementation and its tests will be described in chapter 6. In chapter 5,
we discuss several heuristics that we implemented to improve the results of our algorithm.
An evaluation of our implemented algorithm over a representative set of ontologies will
be discussed in chapter 7. In chapter 8 we will discuss the transfer of E-partition to
other fragments of FOL. As an example, we will transfer the important theorems and the
algorithm to TGD’s.

Chapters 2, 3 and 4 are an extended and revised version of our joint paper (Jongebloed
and Schneider, 2018). Chapter 8 is partially based on unpublished joint work by the
same authors.

1.1 Related Work

Numerous module extraction and modularisation approaches are known (Konev et al.,
2008; Suntisrivaraporn, 2008a; Cuenca Grau et al., 2009a,b; Del Vescovo et al., 2011;
Stuckenschmidt and Schlicht, 2009; Gatens et al., 2013), as well as ontology languages
supporting modular development (Bao et al., 2009; Serafini and Tamilin, 2009). Several
decomposition methods have been developed.

4In the BioPortal corpus from 2017 (Matentzoglu and Parsia, 2017), u occurs in only 322 of all 16.3
million axioms.

5Repository of EPartitioner: https://github.com/sasjonge/epartition
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We can differentiate between two kinds of modularization: A-priori and a-posteriori.
A-priori modularity tries to give the user a tool to compose modular ontologies

One example for a-priori modularization is the package-based description logic
SHOIQP by Bao et al. (2009). SHOIQP is an extension of SHOIQ with A
SHOIQP ontology consists of multiply modules, so called packages, which can be
viewed as SHOIQ ontologies. An important feature of SHOIQP is, that it supports
interpretations from the point of view of a specific package, unlike OWL imports, which
only allow for interpretations from a global point of view, which can lead to unintended
inferences if the contextual nature of the assertions is not cared for.

Another example for an a-priori modularization is the Distributed Description Logic
framework by Borgida and Serafini (2003); Serafini and Tamilin (2009), which use
bridge rules to link between concepts of different ontologies. In contrast to SHOIQP ,
bridge rules can only express subsumption and equivalence and do not allow concept
construction across different modules.

A-posteriori methods provide tools to extract a subset of a given ontology or split a
given ontology into several smaller parts.

Parikh introduced signature decomposition in the context of belief revision (Parikh,
1999) motivated by the work of Alchourrn et al. (1985). Update and belief revision deals
with the question that, given a theory and an axiom inconsistent to the theory, if we add
the axiom to the theory how does the ontology need to be changed to stay consistent.
Naturally, the question of which part of the ontology needs to be changed follows. The
signature decomposition proposed by Parikh (1999) (which he called T-splitting with
T being a theory) is a decomposition of the signature of a logical theory. It can easily
be transfered to first order logic without equality by using the countable infinite model
property of consistent first order theories (without equality) and induces a partition of
the axioms into signature-disjoint parts.

Konev et al. (2010) later refined signature decomposition for Description Logics. They
especially observed that some roles (e.g. hasPart) can behave like a logical symbol and
create unwanted dependencies in the signature. Therefore they introduced Δ-signature
decomposition to allow the exclusion of a set Δ of these symbols for the decomposition.

Several other decomposition approaches have been developed, some of which are
solely based on statistical parameters, like structure-based partitioning. An important
assumption for structure-based partitioning is, that the dependency between concepts
can be derived by the structure of the ontology (Stuckenschmidt and Schlicht, 2009;
Amato et al., 2015; Seidenberg and Rector, 2006).

Stuckenschmidt and Schlicht (2009), for example, create a weighted dependency
graph by the structure of the ontology. They extract modules by splitting the ontology
into parts that are stronger internally connected than externally.

In the context of this thesis our main interest lies in module extraction and decomposi-
tion methods which yields strong logical guarantees.

For this purpose Ghilardi et al. (2006) introduced the notion of conserative extension:
The union of two ontologies is a conservative extension of one of the parts (w.r.t. a
given signature) if all consequences of the union are already consequences of the part.

12
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In this context a module can be defined as a part of an ontology s.t. the ontology is an
conservative extension of the module. This would give the logical guarantee, that all
consequences of the ontology are consequences of the module.

Unfortunately Lutz et al. (2007) showed that deciding if an union of two ontologies is a
conservative extension of one of its parts is undecidable for expressive description logics,
like SROIQ which forms the basis of OWL. Additionally Lutz et al. (2007) showed
that deciding conservative extensions defined in model-theoretic ways is undecidable
even for less expressive logics.

Several approximations have been introduced to circumvent this negative results. In
their paper Grau et al. (2008) discussed the property they call safety. Safety defines con-
ditions so that a set symbols can be reused without changing their meaning. Unfortunely
Grau et al. (2008) also find that determining safety for the description logic ALCIQO
is undecidable. To find a approximation of safety that is decidable Grau et al. (2008)
define safety classes, which describe sufficient conditions for safety.

Grau et al. (2008) introduced the safety class locality, which is a sufficient condition
for safety and can be calculated efficiently. The modules archieved with this method are
called Locality-based modules (LBM). Several other approximations were developed:
Reachability-based modules by Suntisrivaraporn (2008b), MEX modules by Konev et al.
(2008) and Datalog-based modules by Romero et al. (2016).

Instead of extracting one module, decomposition, i.e. extracting all modules could be
of interest. A naive approach for a decomposition method is, to create it from LBM’s by
using every possible seed. Unfortunately there are exponential many seeds in the the size
of the ontology (Parsia and Schneider, 2010). Del Vescovo et. al. define in Del Vescovo
et al. (2011) fake and genuine modules. Genuine modules can be seen as modules that
cannot be decomposed into smaller modules. Del Vescovo et al. (2011) show that there
are only linear many genuine modules that they can be calculated in polynomial time. In
contrast to the parts of E-connections, genuine modules can overlap.

Vescovo et al. (2019) define atoms as the maximal subset of axioms that are never
separated by any genuine modules. A(O) is the set of all atoms of O. An atom a is
dependent on an atom b, written a � b if, if for each module it holds that if a is in the
module, b is also in this module. We call the poset (A(O),�) the atomic decomposition
(AD) of O.

13





Chapter 2

Preliminaries

We denote concept names with A, B, . . . , complex concepts with C,D, . . . , abstract role
names with r, s, . . . , complex abstract roles (role names r or inverses r−) with R, S , . . . ,
concrete roles with P, P�, . . . individual names with a, b, . . . , datatypes with d, d�, . . . and
axioms with α, β, . . . . Concepts and axioms are built according to table 2.1 and table 2.2,
where m ∈ N and the remaining letters are as explained above.

Additionally, to the axioms of SROIQ(D), we also handle keys, which are part of
OWL. Syntax and semantics of keys are defined in Parsia et al.’s (2008) conference
paper. They are expressed using the following syntax:

Definition 1.
C HasKey(R1, . . . ,Rn, P1, . . . , Pm)

where the Ri are abstract roles (possibly inverse) and the Pi are concrete roles. We use
NAMED to denote the set {aI | a ∈ ΣI}. The semantic of keys is:

I |= C HasKey(R1, . . . ,Rn, P1, . . . , Pm)

if for all d, d�, e1, . . . , en ∈ ΔI∩NAMED and all x1, . . . , xm ∈ ΔD the following
holds: if

• d, d� ∈ CI and

• (d, ei), (d�, ei) ∈ RI
i for all i ≤ n and

• (d, xi), (d�, xi) ∈ PD
i for all i ≤ m,

then d = d�.

The remaining operators �,⊥,�,∃R,∀R,�n R and axiom types (role transitivity,
symmetry, etc.) are “syntactic sugar”; hence we do not treat them explicitly, thus
simplifying the presentation without losing generality. We furthermore ignore OWL’s
global restrictions (regularity, restricted use of non-simple roles) as E-connections and
partitionings do not rely on them. An ontology is a set of axioms.
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Chapter 2 Preliminaries

Table 2.1: Syntax and semantic of SROIQ(D) constructors (Krötzsch et al., 2012;
Horrocks and Sattler, 2001)

Name Syntax Semantics
Individuals:

individual a aI ∈ ΔI
Roles:

atomic abstract role r rI ⊆ ΔI × ΔI
inverse abstract role r− {(x, y) | (y, x) ∈ rI}
atomic concrete
role

P PI ⊆ ΔI × ΔD

universal role u uI = ΔI × ΔI
Datatypes:

datatype d dI ∈ ΔD
Concepts:

atomic concept A AI ⊆ ΔI
intersection C � D CI ∩ DI

union C � D CI ∪ DI

complement ¬C ΔI \CI

datatype
complement

¬d ΔD \ dI

top concept � ΔI

bottom concept ⊥ ∅
existential
restriction

∃R.C {x ∈ ΔI | ∃y.(x, y) ∈ RI ∧ y ∈ CI}
universal restriction ∀R.C {x ∈ ΔI | ∀y ∈ ΔI .(x, y) ∈ RI → y ∈

CI}
at-least restriction. �m R.C {x ∈ ΔI | #{y | (x, y) ∈ RI ∧ y ∈ CI} ≥

m}
at-most restriction. �m R.C {x ∈ ΔI | #{y | (x, y) ∈ RI ∧ y ∈ CI} ≤

m}
local reflexivity ∃R.Self {d ∈ ΔI | (d, d) ∈ rI}
concrete existential
restriction

∃P.d {x ∈ ΔI | ∃y.(x, y) ∈ PI ∧ y ∈ dI}
concrete universal
restriction

∀P.d {x ∈ ΔI | ∀y ∈ ΔI .(x, y) ∈ PI → y ∈ dI}
nominal {a} {aI} ∈ ΔI
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Table 2.2: Syntax and semantic of SROIQ(D) axioms (Krötzsch et al., 2012; Horrocks
and Sattler, 2001)

Name Syntax Semantics
ABox:

concept assertion C(a) aI ∈ CI

abstract role assertion R(a, b) (aI , bI) ∈ RI

concrete role assertion P(a, d) (aI , dI) ∈ PI

individual equality a ≈ b aI = bI

individual inequaltity a � b aI � bI

TBox:
concept inclusion C � D CI ⊆ DI

concept equivalence C ≡ D CI = DI

RBox:
abstract role inclusion R � S RI ⊆ S I

abstract role equivalence R ≡ S RI = S I

abstract role disjointness Disjoint(R, S ) RI ∩ S I = ∅
complex abstr. role
inclusion

R1 ◦ R2 � S RI
1 ◦ RI

2 ⊆ S I

concrete role inclusion P � P� PI ⊆ P�I
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Chapter 3

Foundations

The definitions in this section largely follow those by Cuenca Grau (2005); Cuenca Grau
et al. (2005); however, we simplify notation to allow, as we believe, a more concise
presentation. The differences and their motivation are explained at the end of this section.

3.1 Syntax and semantic of E-connection

In the following, we work with a fixed signature, which is a finite set Σ of concept
names, abstract role names, concrete role names and individual names (together: terms),
i.e., Σ = ΣC � ΣRa � ΣRc � ΣI. Here and in the following, � denotes disjoint union.

An I-indexing of Σ is a function ν that assigns to each concept, individual name and
concrete role name an index ν(A), ν(a), ν(P) ∈ I and to each abstract role name a pair
ν(r) ∈ I × I of indices.

Indexings are extended to arbitrary concepts and axioms inductively:

Definition 1. Let ν be an I-indexing of Σ. ν is extended to arbitrary roles R and concepts
C as follows.

1. If R = r, then ν(R) = ν(r).

2. If R = r−, and ν(r) = (i, j), then ν(R) = ( j, i).

3. If C = ¬D, then ν(C) = ν(D).

4. If C = D � E and ν(D) = ν(E), then ν(C) = ν(D).

5. If C = �m R.D and ν(R) = (i, j) and ν(D) = j, then ν(C) = i.

6. If C = �m P.dr, then ν(C) = ν(P).

7. If C = ∃R.Self and ν(R) = (i, i), then ν(C) = i.

8. If C = {a}, then ν(C) = ν(a).

ν(C) is defined, if the indexing of C is valid according to 1-8, e.g. ν(C) with C = ∃r.D
is undefined if ν(r) = (i, j) and ν(D) � j. A concept C is called an i-concept if ν(C) is
defined and ν(C) = i.
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Definition 2. ν is further extended to axioms as follows. An i-axiom is of the form

9. C � D or C ≡ D where ν(C) = ν(D) = i;

10. R � S , R ≡ S , or Disjoint(R, S ) where ν(R) = ν(S ) = (i, j);

11. P1 � P2, P1 ≡ P2 or Disjoint(P1, P2) where ν(P1) = ν(P2)

12. R1 ◦ R2 � S where ν(R1) = (i, j), ν(R2) = ( j, k), and ν(S ) = (i, k);

13. C(a) where ν(C) = ν(a) = i;

14. R(a, b) where ν(a) = i and ν(R) = (ν(a), ν(b));

15. P(a, x) where ν(P) = ν(a)

16. a ≈ b or a � b where ν(a) = ν(b) = i.

17. C HasKey(R1, . . . ,Rn, P1, . . . , Pm) where ν(C) = ν(P1) = · · · = ν(Pm) = i and, for
all j ≤ n, ν(Rj) = (i, k j) for some k j.

The choice of i for the item 12 and 14 are arbitary, e.g. for 14 it could also be “ν(b) = i”.

The central notion of an ontology consisting of several parts depends on ν:

Definition 3. Given an I-indexing ν with | I |= n, a ν-ontology is a set O = {Oi | i ∈ I},
each of whose components Oi is a nonempty set of i-axioms.

To distinguish (monolithic) ontologies O from (combined) ν-ontologiesO, we sometimes
call the former simple ontologies. We sometimes say that a concept C, individual a or
concrete role P “lives” in the component Oi if ν(C) = i, ν(a) = i or ν(P) = i. A abstract
role R “lives” in a component Oi if ν(R) = (i, j).

The semantics of ν-ontologies is given by ν-interpretations, which are partitioned
according to the indexing of the signature given by ν:

Definition 4. A ν-interpretation is an interpretation (ΔI ,ΔD, ·I,ν) such that

• ΔI = �i≤n Δ
I
i with Δi � ∅ for each component Δi

• ΔD is a nonempty set of the concrete domain, s.t. ΔI ∩ ΔD � ∅

• AI,ν ⊆ ΔIi for all A ∈ ΣC with ν(A) = i

• rI,ν ⊆ ΔIi × ΔIj for all r ∈ ΣRa with ν(r) = (i, j)

• PI ⊆ ΔIi × ΔD for all P ∈ ΣRc with ν(P) = i

• aI,ν ∈ ΔIi for all a ∈ ΣI with ν(a) = i
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3.2 Compatibility and equivalence

ν-interpretations are used for two purposes: (a) for defining the semantics of simple
ontologies given ν, and (b) for defining the semantics of ν-ontologies, which is the usual
semantics of E-connections (Kutz et al., 2004). In case (a), we use the standard DL
semantics and the usual satisfaction symbol |=. We say that O has a ν-model if there
is a ν-interpretation I |= O. The class of ν-models of O is contained in the class of its
(unrestricted) models. For example, if O contains � � A, then all ν-models have a single
component; thus, if ν is an I-indexing with | I |≥ 2, then O has no ν-models but may
still be consistent (i.e., have unrestricted models). For purpose (b), the interpretation
function is extended ensuring that the extension of arbitrary i-concepts is a subset of ΔIi .
For this purpose, (only) the case of negation has to differ from the standard semantics.

Definition 5. The interpretation function of a ν-interpretation I is extended to arbitrary
ν-concepts as follows.

• (¬C)I,ν = ΔIi \CI,ν for i-concepts C

• (C � D)I,ν = CI,ν ∩ DI,ν

• (�m R.C)I,ν = {d ∈ ΔIi | #{e ∈ ΔIj | (d, e) ∈ RI and e ∈ CI,ν} ≥ m} for
(i, j)-abstract roles R and j-concepts C

• (�m P.dr)I,ν = {d ∈ ΔIi | #{e ∈ ΔD | (d, e) ∈ PI & e ∈ drD} ≥ m} for i-concrete
roles P

• (∃R.Self)I,ν = {d ∈ ΔIi | (d, d) ∈ RI} for (i, i)-roles R

• {a}I,ν = aI,ν

Satisfaction of i-axioms in ν-interpretations is defined as follows.

• I |=ν C � D if CI,ν ⊆ DI,ν

• I |=ν C ≡ D if CI,ν = DI,ν

• I |=ν C(a) if aI ∈ CI,ν

• For i-axioms α of all other types (role inclusion, equivalence, disjointness, asser-
tion, individual (in)equality) or HasKey, I |=ν α if I |= α.

I is a model of a ν-ontology O, written I |=ν O, if I |=ν α for all axioms α in O.
O is consistent if it has a model.

3.2 Compatibility and equivalence

The correspondence between simple and ν-ontologies is captured by compatibility and
equivalence. The former notion is syntactic and only requires that the components of O
partition O. The latter is semantic and relative to ν-interpretations.
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Definition 6. Let O be an ontology, ν an I-indexing, and O = (O1, . . . ,On) a ν-ontology.

1. O and O are compatible, written O ∼ O, if O = �i≤n Oi .

2. O and O are equivalent, written O ≈ O if, for all ν-interpretations I, it holds that
I |= O iff I |=ν O.

Unsurprisingly, compatibility does not imply equivalence, and neither does the converse
hold. The latter is trivial:

Example 7. O = {A � B} and O = {¬B � ¬A}, then O ≈ O but O � O.

For the other direction, take

Example 8. O = {¬A � A�, B � B�} and O = ({¬A � A�}, {B � B�}). Then O is
well-formed according to Definitions 1, 2 and 4 and O ∼ O, but O � O because O has
ν-models I with 2 components but no such I is a model of O. The reason is that the
axiom ¬A � A� cannot be satisfied if the extension of both A and A� is restricted to only
one component, as required by Definition 4.

As a consequence of this observation, an additional assumption has to be made, which
is the DL equivalent of domain-independence known from the first-order and database
worlds (Abiteboul et al., 1995). For (most of) SROIQ, this assumption admits an
efficiently decidable syntactic characterisation. For domain-independent ontologies,
compatibility implies equivalence; see Theorem 13.

Definition 9. A concept C (axiom α) is domain-independent (DI) if CI = CJ (I |= α
iff J |= α) for all interpretations I,J with XI = XJ for all terms X. An ontology is DI
if so are all its axioms.

The syntactic characterisation by Cuenca Grau (2005); Cuenca Grau et al. (2005, 2006)
is the following.

Definition 10. The set of local concepts is defined inductively as follows.

• Every concept name is local.

• ¬C is local if C is not.

• C � D is local if C or D is local.

• �m R.C, �m P.dr, ∃R.Self, and {a} are local.

An ontology O is safe if the following hold.

• For all axioms C � D, if D is local, then so is C.

• For all axioms C ≡ D, C is local iff so is D.
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Given an interpretation I and a set S , we write J = I � S if ΔJ = ΔI � S and XJ = XI

for all terms X.
All other axiom types are always DI and therefore do not need to be included in the

definition of safe. HasKey axioms are alway DI because of the restriction to NAMED in
Definition 1.

Theorem 11 ((Cuenca Grau, 2005; Cuenca Grau et al., 2005, 2006)). For all con-
cepts C and ontologies O:

1. C is DI iff C is local.

2. If C is DI, then CJ = CI for all I and J = I � S .

3. If C is not DI, then CJ = CI ∪ S for all I and J = I � S .

4. O is DI iff O is safe.

Not only does Theorem 11 provide a syntactic characterisation of DI; with Definition 10
it also yields a linear-time decision procedure. Here it becomes clear why the universal
role u (with the semantics uI = ΔI × ΔI) cannot be accommodated by the framework:

Example 12. the concept C = ∃u.A is not DI but violates point 3 in Theorem 11: there
are interpretations I and J = I � S with CJ = CI ∪ S (e.g., ΔI = AI = {d} and
S = {e}); but if AI = ∅ then CJ = CI = ∅.
However, point 3 is an essential ingredient not just in the syntactic characterisation
witnessing decidability of DI, but also in the following theorem linking compatibility
and equivalence. Its proof completes the proof of Theorem 7.2 by Cuenca Grau (2005).

Theorem 13. Let O be an ontology, ν an I-indexing, O = (O1, . . . ,On) a ν-ontology.

1. (a) If O is DI and O ∼ O, then O ≈ O.
(b) If additionally O is consistent, then so is O.

2. If O is consistent and not DI, and O ∼ O and O ≈ O, then n = 1, i.e., O = O.

Proof.

Ad 1. (a) Assume that O is DI and O ∼ O. Let I be a ν-interpretation. We need to
show: I |= O iff I |=ν O. For this purpose, we first establish the following property of
i-concepts.

Claim 1. For all i-concepts C:

(i) If C is DI, then CI = CI,ν.

(ii) If C is not DI, then CI = CI,ν ∪� j�i Δ
I
j .

Proof of Claim 1. By induction on C.
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• C = A (concept name). Then C is DI by Definition 9, and (i) follows from
Definition 4.

• C = {a}. Dito, but (i) follows from Definition 4 and 5

• C = �m P.dr. Dito.

• C = ∃R.Self. Dito.

• C = ¬D. Then D too is an i-concept by Definition 1.

(i) If C is DI, then by Theorem 11 and Definition 10 D is not DI and, by
induction hypothesis, DI = DI,ν ∪� j�i Δ

I
j . Hence (¬D)I = ΔIi \DI,ν, which

by Definition 5 equals (¬D)I,ν.

(ii) If C is not DI, then D is DI and, by induction hypothesis, DI = DI,ν. Hence
(¬D)I = (ΔIi \DI,ν)∪� j�i Δ

I
j , which by Definition 5 equals (¬D)I,ν∪� j�i Δ

I
j .

• C = D � E. Then both D and E are i-concepts, too.

(i) If C is DI, then at least one of D, E is DI. We assume D is DI and E is not;
the other two cases are analogous. By induction hypothesis, we get:

DI = DI,ν EI = EI,ν ∪� j�i Δ
I
j

Hence (D � E)I = DI,ν ∩ EI,ν, which by Definition 5 equals (D � E)I,ν.

(ii) If C is not DI, then both D and E are not DI. By induction hypothesis, we
get:

DI = DI,ν ∪� j�i Δ
I
j EI = EI,ν ∪� j�i Δ

I
j

Hence (D � E)I = (DI,ν ∩ EI,ν) ∪ � j�i Δ
I
j , which by Definition 5 equals

(D � E)I,ν ∪� j�i Δ
I
j .

• C = �m R.D. Then by Definition 1 R is an (i, j)-role and D a j-concept, for some
j. Furthermore, C is local (Theorem 11 and Definition 10), and we have to show
(i). By induction hypothesis, we either have DI = DI,ν or DI = DI,ν ∪�k� j Δ

I
k

(depending on whether D is DI or not). Together with RI ⊆ ΔIi × ΔIj , we have

(�m R.D)I = {d ∈ ΔI | #{e ∈ ΔI | (d, e) ∈ RI and e ∈ DI} ≥ m}
= {d ∈ ΔIi | #{e ∈ ΔIj | (d, e) ∈ RI and e ∈ DI,ν} ≥ m}
= (�m R.D)I,ν
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It now suffices to show I |= α iff I |=ν α for every α ∈ O, proceeding by case analysis
over the possible axiom types and using Claim 1 for the cases of concept inclusions,
equivalences, and assertions. The cases for the remaining axiom types follow directly
from the last bullet point in Definition 5.

• α = C � D. We have to show:

CI ⊆ DI iff CI,ν ⊆ DI,ν (∗)

Since O is DI, there are 3 possible cases concerning the domain-independence of
C and D:

1. Both C and D are DI. Then (∗) follows directly from Claim 1 (i).

2. C is DI, D is not. Then we have

CI ⊆ DI iff CI,ν ⊆ DI,ν ∪
�

j�i

ΔIj (Claim 1 (i) and (ii))

iff CI,ν ⊆ DI,ν (since CI,ν ⊆ ΔIi )

3. Neither C nor D is DI. Analogous to the previous case.

• α = C ≡ D. Analogous to the case C � D, requiring only subcases 1 and 3.

• α = C(a). Analogous to the case C � D, requiring only subcases 1 and 2.

Ad 1. (b) It suffices to show that, whenever O is consistent (and DI and compatible
with the ν-ontology O), O has a ν-model. By 1. (a) that model then is a model of O too.

For this purpose we first construct from an arbitrary interpretation I a ν-interpretation
J and then show that I |= O implies J |= O. The construction is by creating n disjoint
copies of the domain (ν is an I-indexing) and distributing the original extensions of
the terms over the parts corresponding to their ν-value. Thus, if I = (ΔI , ·I), then
J = (ΔJ , ·J ) with:

ΔJ = ΔI × {1, . . . , n}
AJ = AI × {i} for all A ∈ ΣC with ν(A) = i

rJ = {((d, i), (e, j)) | (d, e) ∈ rI} for all r ∈ ΣRa with ν(r) = (i, j)

PJ = {((d, i), x) | (d, x) ∈ PI} for all P ∈ ΣRc with ν(P) = (i)

aJ = (aI , i) for all a ∈ ΣI with ν(a) = i

We first establish an auxiliary property that has the same status as Claim 1 in 1 (a):

Claim 2. For all i-concepts C:

(i) If C is DI, then CJ = {(d, i) | d ∈ CI}.
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(ii) If C is not DI, then CJ = {(d, i) | d ∈ CI} ∪ {(d, j) | d ∈ ΔI , j � i}.

The proof of Claim 2 is analogous to that of Claim 1 and thus omitted. We can now use
it to show the desired property:

I |= O implies J |= O

As in 1 (a) we treat each axiom α ∈ O separately, distinguishing its type and using
Claim 2 for the cases of concept inclusions, equivalences, and assertions. Let I |= α.

• α = C � D. We need to distinguish two cases.

If C is DI (then D can be DI or not), then we have

CJ = {(d, i) | d ∈ CI} by Claim 2 (i)

⊆ {(d, i) | d ∈ DI} since I |= α
⊆ DJ by Claim 2 (i)/(ii)

If C is not DI, then neither is D because O is DI, and we have

CJ = {(d, i) | d ∈ CI} ∪ {(d, j) | d ∈ ΔI , j � i} by Claim 2 (ii)

⊆ {(d, i) | d ∈ DI} ∪ {(d, j) | d ∈ ΔI , j � i} since I |= α
⊆ DJ by Claim 2 (ii)

• α = C HasKey(R1, . . . ,Rn, P1, . . . , Pm)

First we show that the following holds: Suppose C is not DI, ν(C) = i and there is
an i-axiom of the form C HasKey(R1, . . . ,Rn, P1, . . . , Pm) then

CJ = {(d, i) | d ∈ CI} ∪ {(d, j) | d ∈ ΔI , j � i} = {(d, i) | d ∈ CI} (∗)
We show this by contradiction: Assume that C is not DI and CJ = {(d, i) | d ∈
CI} ∪ {(d, j) | d ∈ ΔI , j � i} with {(d, j) | d ∈ ΔI , j � i} � ∅. Then there is a
(d, k) ∈ CJ with (d, k) ∈ {(d, j) | d ∈ ΔI , j � i}. By definition of HasKey atleast
one of the following holds: n > 1 or m > 1

– If n > 1 then there is a ((d, k), (e, p)) ∈ RJ
1 . By definition of RJ and

the assumption follows that ν(R1) = (k, p) with k � ν(C). Therefore
C HasKey(R1, . . . ,Rn, P1, . . . , Pm) is not a i-axiom according to 2, which
contradicts the assumption.

– If m > 1 then there is a ((d, k), x) ∈ PJ
1 . By definition of PJ and the assump-

tion follows that num(P1) = k with k � ν(C). Therefore C HasKey(R1, . . . ,Rn, P1, . . . , Pm)
is not a i-axiom according to 2, which contradicts the assumption.

Assume that all (d, j), (d�, j�), (e1, j1), . . . , (en, jn) ∈ ΔJ∩NAMEDJ with NAMEDJ =
{aJ |a ∈ ΣI} = {(aI , i)|a ∈ ΣI}, all x1, . . . , xm ∈ ΔD and the following holds:
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(a) (d, j), (d�, j�) ∈ CJ and

(b) ((d, j), (ei, ji)), ((d�, j�), (ei, ji) ∈ RJ
i for all i ≤ n and

(c) ((d, j), xi), ((d�, j�), xi) ∈ PD
i for all i ≤ m

We can show that the following holds:

– d, d�, e1, . . . , en ∈ ΔI ∩ NAMED. By definition of aJ .

– d, d� ∈ CI . If C is DI, then by (a) and Claim 2 (i). If C is not DI then by (a)
and by (∗)

– (d, ei), (d�, ei) ∈ RI
i . By (b) and the definition of RJ

– (d, xi), (d�, xi) ∈ PD
i for all i ≤ m. By the (c) and the definition of PJ

Thus, by I |= α, we have d = d�. It is also easy to see, that j = j� by definition of
AJ and d, d� ∈ CI . Hence (d, j) = (d�, j).

• α = C ≡ D. Then C is DI if and only if D is, and we can repeat the previous
argument, proving equality in the first subcase.

• α = C(a). Analogous to case C � D, first subcase.

• The cases α = R � S and α = R ≡ S are analogous to case C � D, first subcase,
invoking the definition of RJ instead of Claim 2, and replacing set inclusion with
equality where necessary.

• The remaining cases are obtained by simple modifications to the previous one.

Ad 2. Assume O and O satisfy the four premises of the implication, and let O =
(O1, . . . ,On). We need to show that n = 1. Since O is not DI, by Theorem 11 and
Definition 10 O contains an axiom α = C � D (or C ≡ D) such that D is DI and C
is not. Assume w.l.o.g. that α ∈ O1; hence both C and D are 1-concepts. Since O is
consistent, it has a model I, from which we can construct a ν-model J |= O as in (1) b
above. Claim 2 now implies

CJ = {(d, 1) | d ∈ CI} ∪ {(d, j) | d ∈ ΔI , 1 < j ≤ n} and

DJ = {(d, 1) | d ∈ DI}.

Since CJ ⊆ DJ , this implies n = 1. ❏

Our proof of 1 (b) completes the corresponding proof of Lemma 7.4 by Cuenca Grau
(2005): Claim 2 provides the required strengthening of Claim ♣ by Cuenca Grau (2005),
and we additionally provide the part of the proof required to establish J |= O, using that
claim. In addition, our “direct” definition of J ensures that ΔJ =

�
i≤n Δ

J
i (here with

ΔJi = Δ
I × {i}), which was not the case in the original “cumulative” construction, which

only ensured ΔJ ⊇ �i≤n Δ
J
i .
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3.3 Main differences in notation compared
to (Cuenca Grau, 2005; Cuenca Grau et al., 2005,
2006)

I-indexed signatures correspond to “partitioned vocabularies” by Cuenca Grau (2005);
Cuenca Grau et al. (2005). We consider it easier to carry along the parameter ν instead
of a partitioned vocabulary with its rather long denotation. Indexings also extend more
naturally to complex concepts and axioms. Consequently, “combined knowledge bases”
(a special case of E-connections) are now called ν-ontologies.
ν-interpretations conflate “partitioned interpretations” and “combined interpretations”,

making “corresponding interpretations” redundant. Consequently we distinguish two
semantics: I |= O (the standard semantics for simple ontologies) and I |=ν O (the
E-connection semantics for ν-ontologies).

Equivalence replaces “semantic compatibility” because it indeed captures equivalence
under the class of ν-interpretations. As per the usual understanding of equivalence,
O is not required to have (ν-)models. The implication “if O consistent, then also O”
(under certain assumptions) is now captured by Theorem 13. As a result we reduced
“syntactically compatible” to “compatible”.

Finally, domain-independence replaces “invariance under domain expansions”. We
decided to reflect the relationship with the fundamental first-order notion.
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Chapter 4

The Partitioning Algorithm

4.1 Description

We now present the partitioning algorithm, based on the preceding definitions. As in the
paper by Cuenca Grau et al. (2005, 2006), our algorithm receives as input an ontology O
and returns a ν-ontology O = (O1, . . . ,On) such that O ∼ O and n is maximal with this
property. If O is domain-independent, O ≈ O follows by Theorem 13. The indexing ν is
not computed by the algorithm but is implicit in the created data structure.

Our algorithm determines n, the Oi, and the implicit ν by “gathering” constraints
between the ν-values of the concepts and roles occurring in O in an undirected and
edge-labelled graph G, called the constraint graph, with G = (V, E, L) and L : E → 2O.
Let sub(O) be the set of concepts (atomic or complex) occurring in O. The graph G has
one vertex for each concept in sub(O), individual or concrete role occurring in O, and
two vertices r0, r1 per abstract role in O. L labels the edges with a set of axioms. The
edges represent the constraints imposed by Definition 1 and 2. For example:

Example 1. Suppose α = A � ∃r.¬B and β = B � B�, then G has vertices A,∃r.¬B, r0, r1, B, B�,
and α, β induce edges {A,∃r.¬B}, {∃r.¬B, r0}, {r1, B}, {B, B�}, representing case 5 of Def-
inition 1 and case 9 of 2. The edges {A,∃r.¬B} and {B, B�} are labelled {α} and {β},
respectively. Now G has 2 connected components (CCs): G1 with vertices A,∃r.¬B, r0

and label α; G2 with r1, B, B� and β. Hence O = ({α}, {β}). The I-indexing with I = {1, 2}
follows from membership in the Gi: A,∃r.¬B are 1-concepts, r is a 12-role, and B, B�

are 2-concepts.

This procedure is given by the main routine partition(O) of Algorithm 1. It first
creates the graph G and then adds all edges induced by the structure of the concepts
(subroutine addSubConceptEdges) and axioms (addAxiomEdges) in O to G. For each
role R, both subroutines use the notation Ri, which equals ri if R = r and r1−i if R = r−,
for i = 0, 1. Additionally, addAxiomEdges labels, for each axiom α, one of the created
edges with α. Next, the CCs of G are determined (e.g., via breadth-first search). Finally,
the partitioning is read off the axiom labels in the CCs. Not all CCs need to be labelled
with some axiom: e.g., if B � B� is omitted from the above example, we will get the
same G1,G2, but G2 will not contain any axiom label. Therefore, the partitioning of O
is determined using only those CCs with ≥ 1 axiom label. We revisit this case below.
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Chapter 4 The Partitioning Algorithm

Algorithm 1: Partitioning an ontology O
1 Function partition(O):

input : O with signature Σ
output : ν-ontology O

2 V ← {C | C ∈ sub(O)} ∪ ΣI ∪ {r0, r1 | r ∈ ΣR} ∪ {P | P ∈ ΣRc}; E ← ∅;
L← ∅; G ← (V, E, L)

3 forall C ∈ sub(O) do addSubConceptEdges(G,C)
4 forall α ∈ O do addAxiomEdges(G,α)
5 {G1, . . . ,Gn}←

all connected components (CCs) of G with ≥ 1 axiom label
6 forall i ≤ n do Oi ← {α | α ∈ L(v, v�) for some edge (v, v�) in Gi}
7 O← (O1, . . . ,On)

8 return (O)

Algorithm 2: addSubConceptEdges
1 Function addSubConceptEdges(G,C):
2 switch C do
3 case ¬D do E ← E ∪ {C,D}
4 case D � F do E ← E ∪ {{C,D}, {C, F}}
5 case �m R.D do E ← E ∪ {{C,R0}, {R1,D}}
6 case �m P.dr do E ← E ∪ {{C, P}}
7 case ∃R.Self do E ← E ∪ {{C,R0}, {C,R1}}
8 case {a} do E ← E ∪ {{C, a}}
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4.1 Description

Algorithm 3: addAxiomEdges
1 Function addAxiomEdges(G,α):
2 switch α do
3 case C � D or C ≡ D do
4 E ← E ∪ {C,D};
5 updateLabel(C,D,α)

6 case R � S , R ≡ S or Disjoint(R, S ) do
7 E ← E ∪ {{R0, S 0}, {R1, S 1}};
8 updateLabel(R0, S 0,α)

9 case P1 � P2, P1 ≡ P2 or Disjoint(P1, P2) do
10 E ← E ∪ {{P1, P2}};
11 updateLabel(P1, P2,α)

12 case R ◦ S � T do
13 E ← E ∪ {{R1, S 0}, {R0, T0}, {S 1, T1}};
14 updateLabel(R0, T0,α)

15 case C(a) do
16 E ← E ∪ {C, a};
17 updateLabel(C, a,α)

18 case R(a, b) do
19 E ← E ∪ {{a,R0}, {R1, b}};
20 updateLabel(a,R0,α)

21 case P(a, x) do
22 E ← E ∪ {{P, a}};
23 updateLabel(P, a,α)

24 case a ≈ b or a � b do
25 E ← E ∪ {{a, b}};
26 updateLabel(a, b,α)

27 case HasKey(C,R1, . . . ,Rn, P1, . . . , Pm) do
28 E ← E ∪ {{C,R1

0}, . . . , {C,Rn
0}, {C, P1}, . . . , {C, Pm}}};

29 if n ≥ 1 then
30 updateLabel(C,R1

0,α)
31 else
32 updateLabel(C, P1,α)
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Algorithm 4: updateLabel
1 Function updateLabel(C,D,α):
2 if L(C,D) undefined then
3 L(C,D)← {α}
4 else
5 L(C,D)← L(C,D) ∪ {α}

4.2 Correctness

Now we want to show that the algorithm returns a combined ontology O that is com-
patible with the input ontology O. With Theorem 13 we also have that O and O are
equivalent, provided that O is domain-independent.

Theorem 2. If O = partition(O), then O is a ν-ontology for some ν, and O ∼ O.

Proof. O ∼ O follows directly from lines 4–8 of partition. For the existence of ν, let
G = (V, E, L) be the graph created in lines 1–4 of partition, G1, . . . ,Gn the CCs with
≥ 1 axiom label and Gn+1, . . . ,Gm with m ≥ n the remaining CCs. Let ν be a function
assigning a index ≤ n to each vertex in G and each axiom in O:

• for every i ≤ n: ν(x) = i for all vertices x in Gi

• for every i > n: fix some j ≤ n and let ν(x) = j for all vertices in x in Gi

• for all edges {x, y} in Gi with L({x, y}) = α: ν(α) = i

ν contains an I-indexing of Σ if we additionally set:

• for all roles r ∈ ΣR: ν(r) = (ν(r0), ν(r1))

It remains to show that ν respects Definition 1 and 2.

1. ν is a I-indexing of Σ = sig(O).

2. ν on arbitrary concepts is an extension of ν on Σ that respects Definition 1, i.e.,
every C ∈ sub(O) is a ν(C)-concept. This is an easy induction on the structure of
C.

• C = ¬D: By line 3 of of the algorithm G contains the edge {C,D}. Hence
C,D are in the same CC. Then ν(C) = ν(D).

• C = �m R.D: By line 5, G contains the edges {C,R0}, {R1,D}. Hence C,R0

are in the same CC, and so are R1,D. Then ν(C) = ν(R0) = i, ν(D) = ν(R1) =
j and ν(R) = (i, j).

• All other cases are analogous.
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3. ν(α) respects the second part of Definition 2, i.e., every α ∈ O is a ν(α)-axiom.
This is an easy case distinction on the type of α.

• α = C � D: By line 5, G contains the edge {C,D} with L({C,D}) = α. Hence
C,D and {C,D} are in the same CC and ν(C) = ν(D) = ν(α).

• All other cases are anologous. ❏

4.3 Maximality

The result of the algorithm is the maximal O with O ∼ O in the following sense. Let
O = (O1, . . . ,On), O� = (O�1, . . . ,O�m) be a ν- and a ν�-ontology with

�
i≤n Oi =

�
i≤m O�i .

We write O � O� (“O is at least as coarse as O� ”) if for every Oi there is an O�i s.t.
Oi ⊆ O�i . In other words: if O � O� then every O�i is the union of one or several Oi.

Theorem 3. If O = partition(O) then, for every O� with O ∼ O�, we have O � O�.
Proof. Let G = (V, E, L) the graph created in lines 1–4 of partition and O =
(O1, . . . ,On); furthermore let O� = (O�1, . . . ,O�m) be a ν�-ontology. It suffices to show:

For all i ≤ n and all α, β ∈ Oi: ν�(α) = ν�(β) (∗)

To prove (∗) we will first show an auxiliary property, which involves the obvious
extension of ν� to all vertices in G; in particular, if r is a role name with ν�(r) = (i, j),
then ν�(r0) := i and ν�(r1) := j.

Claim 1. For every x, y ∈ V: if x, y are in the same CC of G, then for all indexings ν�

of Σ we have ν�(x) = ν�(y).

Claim 1 is proven via induction on the distance between x, y in their CC. The base case
x = y is trivial. For the induction step, suppose that the claim holds for x, x� (by IH) and
there is an edge between x� and y. Now ν�(x�) = ν�(y) can be shown via a straightforward
case distinction on the creation of the edge in the functions addSubConceptEdges and
addAxiomEdges together with Definition 1 and 2. Hence ν�(x) = ν�(y).

We can now prove (∗) proceeding by axiom types and analysing the respective cases of
addAxiomEdges. We just show one case; the remaining ones are very similar.

• α = C1 � D1 and β = C2 � D2: Since α, β are in the same CC, then so are C1,C2

(by construction of ν and G). Claim 1 implies ν�(C1) = ν�(C2) and by Definition 2:
ν�(α) = ν�(β). ❏

4.4 Complexity

Let O be the input ontology, and G = (V, E, L) the constraint graph created in lines
1–4 of partition. Set k = |O| (representing the number of axioms), � = |sub(O)|
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(representing the number of subconcepts), m = |Σ | (representing the length of vo-
cabulary) and p = max{max{n | C HasKey(R1, . . . ,Rn, P1, . . . , Pm) ∈ O, c},max{m |
C HasKey(R1, . . . ,Rn, P1, . . . , Pm) ∈ O}} (representing the max number of abstract or
concrete roles in the HasKey axioms).

We first consider the size of the created constraint graph. The number of vertices is
restricted by � + 2m (2 vertices per role). It is easy to see that addAxiomEdges is called
k-times and each call adds at most h edges with h = max{3, p}. addSubConceptEdges
adds at most 2 edges and is called � times. Hence the number of edges is limited by
hk + 2�. Each call to addAxiomEdges and addSubConceptEdges is in at most linear
time if HasKey axioms occur in O. The calls are in constant time if no HasKey axiom
occurs in O.

The connected components of G can be calculated using breadth-first search in
O(|V | + |E|) = O(hk + � + m) (Hopcroft and Tarjan, 1973). The components with ≥ 1
axiom label can be found going through all edges in O(|E|) = O(hk + �). To collect the
axioms for each component in line 5–6 every edge needs to be checked once. Therefore,
this step is also in O(|E|) = O(hk + � + m).

Altogether the partition algorithm takes linear time without HasKey axioms in
O, limited by O(3k + � + m), in contrast to Theorem 7.2 by Cuenca Grau (2005),
which is quadratic. The algorithm takes quadratic time with HasKey axioms, limited by
O(hk + � + m). We consider the linear time complexity as the key result, because we
observed that HasKey axioms play a minor role in modelling, occuring only once in all
16.3 million axioms of the 2017 BioPortal Snapshot by Matentzoglu and Parsia (2017).

4.5 Discussion

We conclude this section with remarks concerning the implicit labelling of terms in the
input ontology, the treatment of �, and the deterministic character of our algorithm.
partition(O) creates a ν-ontology O with O ∼ O. The corresponding indexing ν is

induced by the CCs of the created constraint graph G. As we have already pointed out
in the description of the algorithm, some CCs may not contain any axiom label. In this
case the indexing of the “unlabelled” CCs is arbitrary, as seen in the proof of Theorem 2.
If a unique indexing is required, e.g., in order to assign “home components” in O to the
terms in O, then user intervention is required:

Example 4. Suppose O = {A � ∃r.¬B, A� � ∃r�.B}. Then there are 3 CCs: G1 with
vertices A, r0,∃r.¬B; G2 with A�, r�0,∃r�.B; G3 with r1, r�1, B. Now G3 is not axiom-
labelled, and so r1, r�1, B could be assigned to either G1 or G2. Only the user can make
that decision, and they need to know the respective subdomains: if the axioms are
rewritten into HappyChild � ∃hasPet.Puppy and HappyDog � ∃hasChild.Puppy,
then G3 should be merged with G1.

Algorithm 1 does not treat � explicitly. The required additions are straightforward but,
from a theoretical point of view, unnecessary since � can be rewritten as A�¬A, as usual.
In that case, a fresh concept name A should be used for each occurrence of �; Otherwise
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vertices and the corresponding subdomains might be spuriously connected, e.g., hasToy1

and hasFood1 if O contains HappyChild � ∃hasToy.� and HappyDog � ∃hasFood.�
Compared with the previous algorithms (Cuenca Grau, 2005; Cuenca Grau et al.,

2005, 2006), neither partition nor its subroutines make any nondeterministic choices.
In particular, the computed partition is unique up to permutation of the components
because the generated graph G does not depend on the order in which concepts and
axioms are traversed. This last property is much less obvious in the previous algorithms,
which contain a nondeterministic choice without a rigorous argument that the result is
still deterministic (and we did observe a nondeterministic behaviour of the prototype
implementation of the previous algorithm (Cuenca Grau, 2005; Cuenca Grau et al., 2005,
2006)).

4.6 Run-Through Example for Algorithm 1

Let us consider the ontology O = {α, β, γ, δ} with α = A � ∃r.¬B, β = C � ∀s.B,
γ = r � s and δ = B � B� � B��. In the Algorithm 1 we have no case for the universal
quantification ∀s.B. To handle them we will use the equivalent concept ¬∃s.¬B. The
steps of the algorithm are as follows:

Step 1 In line 2 of Algorithm 1: V is set to {A,C,∃r.¬B, B,¬∃s.¬B,∃s.¬B,¬B, B� �
B��, B�, B��, r0, r1, s0, s1}. E, L are empty.

A ∃r.¬B r0

C ¬∃s.¬B ∃s.¬B s0

r1

s1

¬B B B� � B��

B�

B��

Fig. 4.1: Step 1 of example: Add vertices

Step 2 addSubConceptEdges is called in line 3 of Algorithm 1. This calls line 2 to
5 of Algorithm 2: The edges (∃r.¬B, r0), (r1, B), (¬∃s.¬B,∃s.¬B), (∃s.¬B, s0), (s1, B),
(B� � B��, B�) and (B� � B��, B��) are added to E.
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A ∃r.¬B r0

C ¬∃s.¬B ∃s.¬B s0

r1

s1

¬B B B� � B��

B�

B��

Fig. 4.2: Step 2 of example: Calls to addSubConceptEdges

Step 3 addAxiomEdges is called in line 4 of Algorithm 1. This calls line 2 to
8 of Algorithm 3: The edges (A,∃r.¬B), (C,¬∃s.¬B), (r0, s0), (r1, s1) and (B, B� �
B��) are added to E and updateLabel is called. The calls to updateLabel set L to
{((A,∃r.¬B),α), ((C,¬∃s.¬B), β),
((r0, s0), γ), ((B, B� � B��), δ)}.

A ∃r.¬B r0

C ¬∃s.¬B ∃s.¬B s0

r1

s1

¬B B B� � B��

B�

B��

α

β

γ

δ

Fig. 4.3: Step 3 of example: Calls to addAxiomEdges

Step 4 In line 6 of Algorithm 1, G has two CCs: G1 consists of vertices A,C,∃r.¬B,¬∃s.¬B,∃s.¬B, r0, s0

and G2 consists of r1, s1, B, B� � B��, B�, B��.
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G1

G2

A ∃r.¬B r0

C ∃s.¬B s0

r1

s1

¬B B� � B��

B�

B��

¬∃s.¬B

B

α

β

γ

δ

Fig. 4.4: Step 4 of example: Connected components

Step 5 In lines 6 and 7 of Algorithm 1, we get O = (O1,O2) with O1 = {α, β, γ} and
O2 = {δ}.

If we remove δ from the input ontology, then the run is analogous, but G2 will not have
an axiom label (see also the remark in Chapter 4.1). Consequently O is the singleton
E-connection (O), as expected.

It is easy to see that in the implementation you can save the conversion to the equivalent
formula by handling ∀s.B exactly like ∃s.B in the algorithm. In the graph 4.5 we specify
the resulting constraint graph of an accordingly extended algorithm.

G1

G2

A ∃r.¬B r0

C ∀s.B s0

r1

s1

B B� � B��

B�

B��

α

β

γ

δ

Fig. 4.5: Step 4 of of the extended algorithm on the example
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Chapter 5

Heuristics

We have learned in our experiments that the partitioning of many ontologies results
in a single partition containing the entire ontology. Another significant portion of the
partitions has a part that contains almost all (i.e., >95%) logical axioms of the original
ontology. Further observations have shown that this ”collapse” of the axioms into one
component is due to a small number of vertices and edges connecting two subgraphs
(and thus possibly ”topics” of the ontology). Finding and removing these vertices and
edge would result in a finer partitioning. In this chapter, we give a description of the
heuristics and discuss them. The heuristics presented here are roughly sorted according
to how much input from the notzer is required. An evaluation of the heuristics can be
found in chapter 7.

An important term we will use in this chapter is the term ”connected vertex”. A
”connecting vertex” of a graph is a vertex whose removal results in the graph containing
more connected components. Accordingly, a ”connecting edge” of a graph is an edge
whose removal results in the graph containing more connected components.

It is important to note that after removing axioms from the ontology according to
a heuristic, the result of partitioning is no longer equivalent to the original ontology.
It is, however, equivalent to the adjusted ontology that is created by the heuristic, if
the heuristic only adjusts the input ontology before the run of the algorithm. The user
must therefore decide whether the loss of knowledge is acceptable. This question is not
investigated in the scope of this thesis. In addition, a non-equivalent partitioning is also
interesting to see the general structuring of the ontology.

5.1 Ontology Level Reducer Heuristic (OLH)

We have observed in our tests that the connecting vertices often represent top-level
classes. An example would be an ontology about food, that uses the class Food as a
top-level concept. Any other class in the ontology is, therefore, a direct or indirect
subclass of Food. According to the Definitions 1 and 2 this would result in all classes
being pulled into one component. This will result in a partition with only one component.

We implemented a heuristic that removes top-level classes level-wise. For the first
level, we remove all classes that are direct subclasses of � except for classes that do
not have subclasses. In the following level, we remove the subclasses of the classes we
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removed in the previous step. The number of levels of this step can be adjusted by the
user.

5.1.1 OLH After

We have also implemented an alternative or complementary heuristic that, after removing
the first level, removes for each subsequent level only the concepts of the largest compo-
nent (if they have more than a certain percentage of the logical axioms of the original
ontology). This is to avoid unnecessary removal of concepts of small components.

5.2 Biconnectivity Heuristic (BH)

While studying the results of the OLH, we have observed that sometimes concepts are
removed even though their removal has not reduced the connectivity of the graph. This is
because the vertex representing the concept is not a connecting vertex. Mihai Pomarlan
from the University of Bremen provided the idea to locate the corresponding vertices
and edges, and thus their concepts, roles, and axioms precisely and automatically. A
promising approach seemed to be the finding of biconnected components.

A graph is called biconnected if the removal of an arbitrary vertex will still result in
a connected graph. A biconnected component of a graph is a maximal subgraph that
is biconnected. For this heuristic, we try to find biconnected subgraphs (biconnected
components). This is done by using a linear time depth-first algorithm by Hopcroft and
Tarjan (1973). These components are connected by shared edges called bridges. This
heuristic removes these edges to reduce the connectivity of the graph. When removing
these edges, we also have to remove their creating axioms and all vertices and edges
created by these axioms. This is necessary to maintain the consistency of the represented
knowledge. We allow the user to set a limit to how many axioms may be removed by
removing an edge. To limit the loss of axioms, we also allow users to set a limit to how
many axioms may be removed by removing an edge.

5.3 Community Detection Heuristic (CD)

We have also investigated an alternative way to locate these connecting vertices and
edges. In this heuristic, we try to identify the dense groups of vertices instead of
the connecting edges and vertices. The finding of such groups is called Community
Detection. Community Detection is a well-researched topic in the field of big data
research (Zhang et al., 2018).

One of the most used algorithms for community detection is the Louvain algo-
rithm (Blondel et al., 2008). In their article, Traag et al. (2018) introduced the Leiden
algorithm for community detection, which they claim is faster and results in better
partitioning than the Louvain algorithm. To demonstrate this claim, Traag et al. (2018)
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implemented both algorithms in Java and made it available on Github1. The ease of
integration into our software was the main reason to choose these two algorithms for our
experiments.

After the chosen algorithm has detected the communities, we remove all bridges
between these communities. In doing so, as with the Biconnectivity Heuristic, we have
to remove their creating axioms and all vertices and edges created by these axioms.

5.4 Upper-Level Ontology Heuristic (ULH)

Hoehndorf (2010) describes upper-level ontologies as “an ontology that defines and
axiomatizes these most general categories”. They are used to facilitate the development
of ontologies by given a basic structure for the top-level concepts. Known upper-level
ontologies are the Basic Formal Ontology (BFO), the Business Objects Reference
Ontology (BORO), and the Common Semantic Model (COMO).

Our implemented heuristic allows us to store several upper-level ontologies in a single
file. This file can then be used to check another ontology for the occurrence of one of
the stored upper-level ontologies. If the occurrence is detected (i.e., a given threshold of
the concepts are contained in the ontology), we remove the corresponding upper-level
ontology.

In contrast to the heuristics mentioned so far, this heuristic can be seen as the least
automatic heuristic. The user has to select the upper-level ontologies to be tested and
add them to the upper-level file. This would, therefore, also allow a specific selection
of the concepts to be removed. It becomes apparent that a very specific selection is
usually necessary for the individual ontologies. For this reason a further evaluation of
this heuristic is difficult.

5.5 Ignore Properties Heuristic (IPH)

The idea for our last heuristic was born in the expert interview while evaluating our
algorithm with the ontology SNOMED CT (see Chapter 7.1.3). As a goal of heuristics
one can see to divide ontology into different topics, e.g. diseases and organisms. We
found that some properties are used in several different topics of the ontology, although
these topics are not otherwise related. An example would be the property “Associated
With”, which can describe the association of diseases with each other, but also of
organisms with each other. This use will (according to definitions 1 and 2) result in the
diseases and organism topics being combined into one component.

From this observation, we have decided that it can be useful to ignore these discussed
properties when creating the graph. We have divided these properties into three groups.
Rangeglobal properties are properties that occur only in their range in different topics of
the ontology. Domainglobal properties occur only in their domain in different “topics”
of the ontology. Global properties are properties that are rangeglobal and domainglobal.

1CWTSLeiden Network Analysis: https://github.com/CWTSLeiden/networkanalysis
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If this heuristic is switched on, the algorithm is adjusted as follows: For range-global
properties, we will no longer draw edges to their “R1” vertices. For domain-global
properties, we will no longer draw edges to their “R0” vertices. For global properties,
both these restrictions apply.

For this heuristic, the user has to define the global, rangeglobal, and domainglobal
properties in advance. According to our observation, this is only possible for experts of
the ontology, because only they can decide which parts of the ontology correspond to
different topics.

In contrast to the other heuristics discussed, this heuristic changes the behavior of
the algorithm. For this reason, unfortunately, no statement can be made about the
equivalence of the partition and the original ontology. Nevertheless, we believe that the
resulting partition might be interesting for an ontology developer to better illustrate the
structure of the ontology.
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Chapter 6

Implementation

We have implemented the proposed algorithm in Java. We call the implemented tool
EPartitioner. The implementation and documentation can be found on Github1. EParti-
tioner takes ontologies as input and returns either a graph representing the partitioning
or the partitioning in the form of individual ontologies.

6.1 High-Level View of the System Structure

6.1.1 Core Implementation

Fig. 6.1: Structure of Core Implementation

First, we want to describe the structure of the core of our implementation. This
description of the rest of the software is done in the next sections.

1https://github.com/sasjonge/epartition/
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Fig. 6.1. is a diagram showing the structure of the implementation. The main class of
the tool is the ”Partitioner” class. This class determines the program flow.

The package ”Partitioner” is the logical core of the implementation. The associated
class ”PartitioningCore” implements the algorithm we introduced (see Chapter 4.1). In
addition, this package contains the implementation of the safety checker according to
the procedures introduced by Cuenca Grau (2005).

In the class ”Settings”, a large number of setting options are offered. These can
be adjusted by the user during use. A description of these options can be found in
chapter 6.3.

In particular, ”Settings” allows you to switch on different heuristics. These heuristics
are called either by the ”Partitioner” class or directly by the ”PartitioningCore”. We offer
four types of heuristics: the ”Ontology Level Reducer Heuristicc”, the ”Community
Detection Heuristic”, the ”Biconnectivity Heuristic”, and the ”Upper Level Heuristic”. A
detailed description of these heuristics can be found in chapter 5. The ”Ignore Properties
Heuristic” is implemented directly in the algorithm in the ”PartitioningCore”. The
package util contains only one abstract class that helps to remove edges created by given
axioms. This functionality is used by several heuristics.

The last important implementation for EPartitioner is the class ”GraphExporter”
which is in the package utils. This allows to output a graph representing the partitioning,
but also the constraint graph. The display of the graph can be customized using the
settings in the Settings class. A detailed description of the graph output can be found
in chapter 6.2.1. The utils package also contains classes that help to display the graphs,
especially to calculate the labels for the different partitions.

6.1.2 Evaluation

The core implementation is extended by the implementation of the evaluation and
analysis functions. It is possible to output the runtime of the individual steps. We can run
these through a larger set of ontologies. The data can be averaged over several runs. The
package ”dataanalyzing” includes an analysis tool to output the number of ontologies of
a folder that are ”unsafe”, contain the universal role, or both.

6.1.3 Used Libraries

For the implementation we used several libraries. In this chapter we will introduce and
describe the most important of these libraries.

6.1.3.1 OWL API

One of the most important libraries used by EPartitioner is the OWL API. The OWL
API is “a high level Application Programming Interface (API) for working with OWL
ontologies” (Horridge and Bechhofer, 2011) and the standard API for working with
OWL ontologies. We use the API to load the ontologies and handle their subconcepts
and axioms. The API is also used for creating the output ontologies.
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6.1.3.2 JGraphT

As described in chapter 4.1, our algorithm builds a graph. For this purpose, we use the
library JGraphT (Michail et al., 2019). JGraphT offers an easy way to model the graph.
Another advantage of the library is the algorithms already available. In the context of this
work, the implementation of the finding of connected components offered by JGraphT is
particularly important2. Finding connected components is solved efficiently via standard
traversal algorithms such as BFS or DFS.

JGrapht is also used to build the output graph. For this purpose it is useful that the
library has already implemented the possibility to output the graph in the GraphML
format. GaphML is a standard format used by many applications, e.g. by the “yEd graph
editors”3 used for this thesis.

6.1.3.3 CWTSLeiden networkanalysis

In Chapter 5.3 we describe, how we use community detection as a heuristic for EPar-
titioner. Traag et al. (2018) introduced the Leiden algorithm for community detection.
To demonstrate the advantages of the Leiden algorithm compared to one of the most
popular Community Detection algorithm (the Louvain algorithm), Traag et al. (2018) has
implemented both algorithms in Java. We use this implementation for our community
detection heuristics.

6.2 Output

EPartitioner provides two kinds of outputs: The parts of the partition as ontologies (in
“.owl” format) or as a partition structure graph.

6.2.1 Graphs

Our algorithm provides the option to output two kinds of graphs.

6.2.1.1 Partition Structure Graph

The partition structure graph visualizes the result of EPartitioner. The vertices of the
graph represent the components of the partition. They are labeled with information about
the represented components. The edges represent the corresponding link relations.

All vertex labels start with some statistics about the represented component. This part
of the label has the following form: “Number of logical axioms (Num. of non-logical
axioms) / Number of Classes / Number of Properties / Number of Individuals”. The rest
of the vertex labels represent the classes, properties, and individuals that “live” in this
component. For classes, we differentiate between top- and sub-level labels.

2JGraphT’s Connectivity Inspector: https://jgrapht.org/javadoc/org/jgrapht/alg/

connectivity/ConnectivityInspector.html
3yEd Graph Editor: https://www.yworks.com/products/yed
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For the top-level, we allow three types of descriptors. The first type of descriptors has
the form “[Name]”. They represent the class with the given name and all its subclasses.
The class has to be a class without super-classes (therefore a top-level class). The second
type of labels has the form “{Name1, Name2, Name3}”. They represent that the classes
Name1, Name2, and Name3 (and all of its subclasses) “live” in this component. The
classes are grouped because they have the same super-class, but not all sub-classes of this
super-class are in this component. We call the classes in this kind of label the sublevel
classes. The last form is simply the name of the class. This form is used when the class,
but not all of its subclasses, are in this component and it does not belong to one of the
aforementioned groups. The vertex labels for properties are structured in the same way.
The labels for individuals are just the names of the individuals. It is also possible to add
a certain number of axioms from the component to the label.

The edges of the graph are labeled with a predefined number of corresponding links
between the components.

6.2.1.2 Constraint Graph

In addition to the partition structure graph, we provide the option to output the constraint
graph that is created in the run of the algorithm (see Chapter 4.1). While this option was
mainly useful to debug the implementation, it could also help the user to visualize the
relations in the ontology.

6.2.2 Ontologies

EPartitioner allows the output of partitions in the form of ontologies (i.e. OWL files). It
is important to note that OWL does not support E-connections. For this reason, the parts
will also contain the declarations of classes, properties, and individuals that actually
“live” in other parts.

6.3 Usage

In this section, we describe how the EPartitioner can be used. In general, the partitioner
can be called in the following way:

1 > java -jar epartitioner-0.1.jar -t

The partitioner is highly customizable. The user can customize the in- and output of
the tool, the used heuristics the details of the heuristics.

If the EPartitioner is called without command-line arguments, it will try to get the
values for the settings from a settings.xml file, that is in the same directory as the “.jar”.
If no such file is provided, that call will fail with an error message. If a settings file is
provided, additional command-line arguments will overwrite the values of the file.

We describe the command line arguments for the EPartitioner in the following section.
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Table 6.1: Settings File Options
Option Description Default
--settings file=

<path to settings file>
Sets the path of the settings file Location of

the .jar

Table 6.2: Input Options
Option Description Default
--input directory=

<path to input directory>
Sets the path of the input
directory, containing one or
several “.owl”-files

Location of
the .jar

6.3.1 Settings file

We offer the option to give a path to the settings file (see Table 6.1). If the user passes
additional command-line arguments, these are used instead of the values in the settings
file.

6.3.2 In- and Output Options

Several options to customize the in- and output are available (see Table 6.2). The first
set of options belonging to this group are there to customize the input. The user can set
the path for the input ontologies.

Another set of options belonging to this group are there to enable and customize the
graph output (see Table 6.3). We can customize the output directory for the graphs, the
type of graph, and the form of the labels. For understanding, it is important to note,
that the class and properties labels are structured by top- and sublevel as described in
Chapter 6.2.1.

The last set of options belonging to this group allow adjusting the output of ontologies
(see Table 6.4).

6.3.3 Runtime Options

In this chapter, we will introduce the various customization options that affect the runtime
behavior of the tool.

In Chapter 4.1 we describe that we add vertices r0, r1 per abstract role r ∈ O to the
constraint graph. Instead of 0 and 1, it can be useful to use other designators for these
vertices because 0 and 1 can appear as suffixes, e.g., of classes. This could cause a vertex
representing a class with the suffix 0 to be misinterpreted as a r0 node.

Due to the frequency of using 0 and 1 as suffixes, we have decided to use [0] and [1]
as default designators. [0] and [1] do not appear as suffixes for classes, individuals, or
roles in any of the ontologies considered in this thesis. For example, none of BioPortal’s
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Table 6.3: Graph Output Options
Option Description Default
--graph output path=

<path to graph output directory>
Sets the path of the graph-output
directory, to which the “.graphml”
files are saved

Location of
the .jar

--graph type=<ID of graph type> Set the graph type. 0 = Partition
structure graph; 1 = Constraint
graph.

0

--show axioms The vertex labels of the partition
structure graph will contain
axioms

false

--axiom count=<Num. of
axioms>

Max. number of axioms to print in
the vertex labels

3

--number of indiv labels=
<Num. of individuals>

Max. number of individuals to
print in the vertex labels

5

--number of property labels edge=
<Num. of properties>

Max. number of properties to
print in the edge labels

4

--number of class labels toplevel=
<Num. of classes>

Max. number of top-level labels
for classes to print in the vertex
labels

5

--number of class labels sublevel=
<Num. of classes>

Max. number of sublevel labels
for classes to print in the vertex
labels

5

--number of property labels vertex toplevel=
<Num. of properties>

Max. number of top-level labels
for properties to print in the vertex
labels

4

--number of property labels vertex sublevel=
<Num. of properties>

Max. number of sublevel labels
for properties to print in the vertex
labels

3

--use rdf label RDF labels ar used as names for
the output graph

false

Table 6.4: Ontology Output Options
Option Description Default
--export ontologies=

<Num. of properties>
The tool will create “.owl” files
for the parts of the E-partition

false

--ontology output path=
<Num. of properties>

Sets the path of the ontology
output directory, to which the
“.owl” files are saved

Location of
the .jar
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Table 6.5: Role Vertices Designators
Option Description Default
--property 0 designator=

<Designator>
Set the designator for R0 [0]

--property 1 designator=
<Designator>

Set the designator for R1 [1]

438 ontologies (Matentzoglu and Parsia, 2017) include [0] and [1] as suffixes. The user
can customize these designators if [0] and [1] appear as suffixes in their ontology (see
Table 6.5).

Another group of options allows the user to switch the various heuristics on and off.
In addition, various adjustments can be made for the different heuristics (see Table 6.6).
A more detailed description of the heuristics can be found in Chapter 5. By default, all
heuristics are deactivated.

The last group of options allows the user to obtain a partitioning even if the ontology
is not safe or contains axioms with the universal role (see Table 6.7). It is important to
note that the resulting partitions will not provide the discussed logical guarantees.

6.4 Testing

To ensure the correctness of our implementation, we implemented extensive unit tests.
The main goal of the tests is to test if the implementation of the algorithm, given an
axiom or subconcept, connects the vertices in the graph correctly.

We implemented 117 unit tests spanning connection tests for all logical axioms of
the OWL 2 API 4 and special case tests for Top and Bottom as inputs. All tests are
successful for the final version of the implementation. An extensive description and a
protocol of the test results can be found in Section A of the appendix.

The unit tests helped us in finding and repairing five incorrectly implemented axiom
and subconcept cases in the implementation phase.

The heuristics, the graph exporter, and the general usage of the implementation were
tested by simple system testing, by using the implementation and by manually comparing
the results with the expected results. Some of the results can be seen in the graphs and
evaluation results of chapter 7.

Non-logical and datatype definition axioms are not tested explicitly, because they will
not add connections in the constraint graph and the algorithm of chapter 4.1 does not
determine the component of the axiom. The only possible test would be to test that the
axioms are preserved. These tests were done in manual system tests.

4Version 5.1.6; Syntax can be found at https://www.w3.org/TR/owl2-syntax/
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Table 6.6: Heuristics Options
Option Description Default
--use iph Use the “Ignore Properties

Heuristic (IPH)”
false

--global properties=
<List of properties, e.g.

[Prop1,Prop2,Prop3,. . . ]>

Set of global properties Empty set

--domain global properties=
<List of properties, e.g.

[Prop1,Prop2,Prop3,. . . ]>

Set of domainglobal properties Empty set

--range global properties=
<List of properties, e.g.

[Prop1,Prop2,Prop3,. . . ]>

Set of rangeglobal properties Empty set

--use olh Use the “Ontology Level Reducer
Heuristic (OLH)”

false

--olh layers to remove=
<Num. of layers>

Set the number of layers that are
removed by the OLH

1

--use olh after Alternative or additional
procedure to “Ontology Level
Reducer Heuristic (OLH)”. Uses
OLH repeatedly on the largest
component.

false

--olh after repetitions=
<Num. of repetitions>

Set the number of repetitions 1

--olh after treshhold=
<Treshhold>

Treshhold of size of biggest
component. If no partition of this
size exist, the heuristic is not
repeated

0.9

--use bh Use the “Biconnectivity Heuristic
(BH)”

false

--bh number of axiom labels=
<Number of axioms>

An edge may not be removed by
the heuristic if removing would
remove more than the given
number of axioms.

1

--bh number of repetitions of heuristic=
<Number of repetitions >

Number of repetitions of the BH 1

--use cd Use the “Community Detection
Heuristic (CD)”

false

--cd leiden Use the Leiden instead of the
Louvain Community Detection
Heuristic

true

--use ulh Use the “Upper level remover
heuristic (ULH)”

false

--upper level file=
<Path to upper level file>

Sets the path of the upper level file Location of
the .jar

--ulh removal treshhold=
<Treshold>

If the ontology contains more than
the treshold of one of the given
upper-level ontologies, it is
removed

0.9
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Table 6.7: Safety and Universal Role Options
Option Description Default
--handle universal roles Allow a limited occurrence of

axioms which contain the
universal role. The affected
axioms are removed.

false

--universal role treshhold=
<Number of axioms>

If “handle universal roles” is set:
Max. number of axioms that will
be allowed, before no further
handling is done.

3
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Chapter 7

Evaluation

In this chapter we will evaluate the implemented EPartitioner. First, we will discuss the
result of our implementation using three specific ontologies.

We will examine the decomposition of two smaller ontologies, namely the Koala1 and
Pizza2 ontology. We will then evaluate our tool on a larger ontology, namely SNOMED.
SNOMED is a medical ontology with over 100.000 logical axioms. We will compare
the results of two versions of SNOMED from 2010 and 2020 and discuss the results of
an expert interview about the decomposition of SNOMED.

After this, we will evaluate the runtime of EPartitioner over the BioPortal Snapshot
by Matentzoglu and Parsia (2017). Wir werden den Korpus anpassen, indem wir die grte
Ontologie, namentlich die Proteasix Ontologie 3, entfernen, da diese bisher zu Problemen
in unseren GraphExporter fhrt. The resulting decompositions will be compared with the
results if EPartitioner uses heuristics.

7.1 Case Analysis

First we want to discuss individual decompositions of ontologies. Due to their simpler
structure, we will first partition Koala and Pizza for this. Then we will discuss the
partitioning of a larger ontology, namely SNOMED CT. For SNOMED we have also
conducted an expert interview.

7.1.1 Koala

The Koala Ontology is a small toy ontology that is often used in tutorials. Due to its size
it even allows a representation of the constraints graph. The graph 7.1 represents the
partitioning of Koala. On page 118 the constraint graph can be found.

Vescovo et al. (2019) have in their work created a customized version of Koala whose
partitioning gives a more interesting partitioning. Our partitioning in the graph 7.2
corresponds to the partitioning expected by Vescovo et al. (2019). Also for this version
we specify the constraint graph on page 119.

1https://protege.stanford.edu/ontologies/koala.owl
2https://protege.stanford.edu/ontologies/pizza/pizza.owl
3https://bioportal.bioontology.org/ontologies/PXO
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Fig. 7.1: Partitioning of the Koala Ontology

Fig. 7.2: Partitioning of the modified Koala Ontology

7.1.2 Pizza

The Pizza Ontology 4 is a small ontology used for a well-known Protege tutorial 5.
The partitioning of the pizza ontology by EPartitioner without heuristics results in a
component that contains the complete ontology.

For this reason we tried partitioning with the ”Ontology Level Reducer Heuristic”,
whereby we initially only removed one level. The result is shown in the graph 7.3. The
partitioning results in three parts, which represent a reasonable division of content. It is
noticeable that one component contains almost all logical axioms. Only 4 of the 322
logical axioms are removed from the heuristics.

We have also tested the ”Ontology Level Reducer Heuristic” with more than one level
to be removed. Two removed levels do not change the partitioning. Three removed levels
result in a further part in partitioning that only contains the classes ”NonVegetarianPizza”
and ”VegetarianPizza” and is not connected to any other component. Additionally, 46 of
the 322 logical axioms are removed. We have tested further increasing the levels to be
removed, but up to 7 levels the partitioning has not changed any further, although only
170 of the 322 logical axioms have been removed.

4https://protege.stanford.edu/ontologies/pizza/pizza.owl
5https://protegewiki.stanford.edu/wiki/Protege4Pizzas10Minutes
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Fig. 7.3: Partitioning of the Pizza Ontolog with 1 Level removed

We have also used the ”Biconnectivity Heuristic” for partitioning the pizza ontology.
Although the result was 28 parts, 25 of them contained only one class. The remaining
three were structured in the same way as the partitioning in Graph 7.3. The disadvantage
is that 87 of the 322 logical axioms were removed from the heuristics.

The ”Community Detection Heuristic” also results in a partitioning similar in content
to the graph 7.3 (this time without parts containing only one class), with only 34 axioms
removed.

This pattern, that heuristics usually lead to a similar decomposition of ontologies, we
have also observed in further experiments. This is because the same nodes are identified
and removed by the heuristics. A possible explanation is that especially the top-level
concepts usually lead to the connectivity of the subgraphs.

7.1.3 SNOMED

7.1.3.1 2010’s Version

Fig. 7.4: Partitioning of SNOMED from 2010 with Top-Level removed

The partitioning of SNOMED from 2010 with the top levels removed is shown in
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the graph 7.4. It shows a rough partitioning with three connected and four unconnected
parts. The largest component contains over 95% of all logical axioms of the partitioned
ontology. An interesting vertex is located in the upper right corner. It contains only 12
axioms but no classes, properties or individuals. This is achieved by using the RoleGroup
property, which we will discuss further in the next chapter.

In contrast to the partitioning of SNOMED in 2020 (see graph 7.5), the largest
component is separated from the component of the topic “qualifier value” and the
component that is important for RoleGroup on the top right.

7.1.3.2 2020’s Version

Fig. 7.5: Partitioning of SNOMED from 2020 with Top-Level removed

7.1.3.3 Expert Interview

On February 5, 2020, we interviewed an Expert on SNOMED CT. The expert in question
was Yongsheng Gao, a senior terminologist of the International Health Terminology Stan-
dards Development Organisation (IHTSDO), which develops and distributes SNOMED
CT. We gave him the partitioning discussed in the previous chapters.

As expected, the expert noted the coarse partitioning. We discussed which properties
of the ontology could result in this ”coarse” partitioning. The first problematic property
we discussed is the usage of the top-level concept with the label ”SNOMED CT Concept
(SNOMED RT+CTV3)”. However, this property was not relevant in the case of the
existing partitioning, since we already removed this top-level concept.

During the interview, we also identified that properties that are used in several different
”topics” could be another reason for ”coarse” partitioning. For example, the property
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”Associated with (attribute)” is used in the axioms with ”Organism (organism)” and
”Disease (disorder)” as a range. Hence our algorithm would create a connection of
”Associated with (attribute)1”, ”Organism (organism),” and ”Disease (disorder)”. The
same problem will occur if concepts are used in the domain of these properties.

Widespread use of such properties will result in strong connectivity between the
”topics”. This could be a reason for the coarse partition of SNOMED CT. We differentiate
between properties that are global in their domain, their range, or in both areas. We will
call these groups of properties ”global”, ”rangeglobal” or ”domainglobal”. We will use
”global” to refer to all properties that belong to one of these groups.

An example of a domainglobal property is the property ”Role Group”. ”Role Group”
represents an ”association between a set of attribute value pairs that causes them to be
considered together within a concept definition or postcoordinated expression” 6. The
domain of “Role Group” can be almost any topic in the ontology. Therefore “Role
Group” is domainglobal.

After this interview, we proposed the heuristic that allows defining sets of global,
rangeglobal, and domainglobal properties that will be ignored during the partitioning
algorithm. This will result in a “finer” partition but also results in a partition without the
known strong-logical guarantees.

In an experiment, we tried to identify global properties for SNOMED CT. This was
done by finding the shortest paths between two concepts that seemed to belong to
different “topics” and identifying property vertices in this chain that seemed promising.
After this, we ran the algorithm on SNOMED CT with the heuristic and the identified
property in their corresponding set of global properties. The property will remain in the
corresponding set if this run results in a finer partition. If the run did not result in a finer
partitioning, we identify a new shortest path, and we will look for further suspicious
property vertices on the path. We repeated this step until the partitioning became finer,
or there was no property vertex on the shortest path.

The result of this experiment is a partition with 18 components (see the simplified
Graph 7.6). The partition is generally finer than the previous partition: The biggest
component does only contain 117.628 logical axioms. The topic of this part is disorders,
events, and clinical findings. The topics of other bigger parts are Organism (34947 logical
axioms), observable entities, procedures and regimes/therapies (67297 logical axioms),
body structures (39233 logical axioms), and physical objects and products (38469 logical
axioms). Ten parts are connected with several link relations, e.g., the “Substance” is
connected to the “Qualifier Value” part via the link relation “Has disposition (attribute)”.
“Role Group” creates a central component for attributes. The other eight parts are
unconnected, for example, the “organism” part.

We sent the new partition to the expert. His evaluation of the new partition was much
more positive than the original partition. The themes of the individual components seem
to correspond to real sub-themes of the ontology. Further comments of the expert only
referred to basic questions or misunderstandings about partitioning using E-connections.

At the time of publication the discussion with the expert is still ongoing.

6https://confluence.ihtsdotools.org/display/DOCGLOSS/attribute%20group
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Fig. 7.6: Decomposition of SNOMED after IGRH

7.2 Decomposability

We analyzed how many of the ontologies of our BioPortal Snapshot by Matentzoglu and
Parsia (2017) are decomposable.

The result is, that 8 of the 438 ontologies are not safe. Additionally 11 ontologies
contain SWRL axioms, which are unsupported in our current implementation. Further-
more, 70 Ontologies contain axioms with the universal role that cannot be handled by
E-Connection. Overall 84 of the 438 ontologies are not decomposable because they are
not safe or contain the universal role. If we allow ontologies with at most 3 axioms with
the universal role (the heuristic will remove these axioms), then the implementation can
handle all but 30 ontologies. In the following sections we will evaluate the remaining
408 ontologies.
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7.3 Statistical Analysis

7.3.1 BioPortal without Heuristics

First we will discuss the quality of the partitioning of EPartitioner. On average, the
ontologies were partitioned into 5.7 parts. On the negative side, the average size of
the largest component of the partitioning is 91.3%. The standard deviation is 18.9%
and the minimum percentage size of the largest component is 10%. Only in 83 of the
408 partitionings was the largest component less than 90% of the logical axioms. 43
partitions had a major portion that contained less than two-thirds of the logical axioms
of the ontologies. 176 ontolgies were not partitioned by EPartitioner, so the result was
only one part containing all logical axioms. This indicates that the E partitioner leads to
weak partitioning on natural ontologies. To counteract this, we have developed several
heuristics that we discuss in chapter 5 and evaluate in chapter 7.3.2.

Now we want to evaluate the runtime of the implementation. We consider the im-
plementation of the core algorithm we discussed in chapter 4 and the implementation
including the graph exporter. The result of the evaluation of our runtime is shown in the
graph 7.7. The graph also contains a polynomial fit.

The graph and the polynomial fit indicate a linear runtime of the core algorithm. This
is particularly indicated by the negligible value of a (assumed y = ax2 + bx+ c).The total
runtime of EPartitioner (including the runtime of the Graph Exporter) increases faster
than that of the core algorithm, but also seems to be linear (with the same argumentation).

7.3.2 BioPortal with Heuristics

In this chapter we want to evaluate some of the implemented heuristics with our BioPortal
Snapshot by Matentzoglu and Parsia (2017).

7.3.3 Ontology Level Reducer Heuristics (OLH)

The “Ontology Level Reducer Heuristics” was described in chapter 5.1. In this section
we want to evaluate this heuristic. For this we use the BioPortal Snapshot (Matentzoglu
and Parsia, 2017). For the evaluation we have removed one to seven levels each. The
graph 7.8 represents the ratio of partitions where the largest component contains less than
90% of all axioms (called <90%-Partitions) to the portion of removed logical axioms.

The result shows a big problem of this heuristic: A large portion of all logical axioms
are removed. Already when removing a one level, about 9.5% of all logical axioms
are removed. Another removed level already results in the loss of 20.2% of all logical
axioms. We stopped evaluating after seven removed levels, since 54.2% of all axioms
were removed.

It could be argued that the high percentages are due to removing levels in small
ontologies, since removing an axiom results in a higher percentage in a small ontology
than in a larger ontology. To verify this we have studied the proportion of removed
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Fig. 7.7: Test Runtime of core algorithm to number of logical axioms
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Fig. 7.8: Partitions with biggest Partition containing less than 90% of all axioms to
percentage of removed axioms

axioms for all ontologies with more than 1, 100, 10000 and 50000 logical axioms. The
results of the investigation are shown in the graph 7.9.

We can see that although the percentages decrease as the size of the ontologies
increases, they do not decrease in proportion to the size of the ontology. The percentages
for ontologies with more than 100 logical axioms is not one hundredth of the values for
ontologies with more than 10000 logical axioms. It follows that the problem also applies
to larger ontologies, where thousands of axioms are removed.

One ray of hope is that the number of axioms removed varies greatly. In table 7.1 we
present the standard deviation (near the average) of the removed axioms in all ontologies.
If we remove a level, 75 of the 354 ontologies with more than 100 logical axioms have
only 5 or less logical axioms removed. 24 of the 75 ontologies have a largest component
with less than 90% of all logical axioms. This data suggests that heuristics can be useful
in some cases, but should be used with caution with regard to loss of knowledge.

7.3.4 OLH Alternative

We have discussed an alternative or supplementary heuristic to “Ontology Level Reducer
Heuristic (OLH)” in chapter 5.1.1. The heuristic removes, after removing the first level,
for each subsequent level, only the concepts of the largest component (if they have more
than a certain percentage of the logical axioms of the original ontology). We call this
heuristic “OLH After”.

61



Chapter 7 Evaluation

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

Pe
rc

en
ta

ge
of

R
em

ov
ed

A
xi

om
s

All Ontologies
All Ontologies with >100 Logical Axioms

All Ontologies with >1000 Logical Axioms
All Ontologies with >10000 Logical Axioms
All Ontologies with >50000 Logical Axioms

Fig. 7.9: Percentage of Removed Axioms

Furthermore, we will call the heuristic, which removes another level after the removal
of the first level by OLH according to the principle of this alternative heuristic, from
now on abbreviated OLHAfter1. The heuristic, which removes two levels after the
first level after OLH according to the principle of this alternative heuristic, we will call
OLHAfter2 accordingly, and so on. Accordingly to this notation, OLH1 refers to the
removal of a level by the OLH, OLH2 refers to the removal of two levels by the OLH
and so on. It is important to note that OLHAfter1 and OLH2, and OLHAfter2 and OLH3
are comparable since both have the same number of “levels” removed.

The result of the evaluation of OLHAfter1 and OLHAfter2, and for comparison, the
results for OLH1, OLH2, and OLH3 can be found in table 7.2.

It can be seen that the new heuristic does not perform better than OLH in terms of the
number of components and the size of the largest component. OHLAfter1 results in only
28.5 components and the largest component containing an average of 79.3% of all logical
axioms. For comparison, OLH2 results in 37.7 components and the largest component
containing an average of 79.3% of all logical axioms. OLHAfter1 also removes slightly
more logical axioms than OLH2 (10.3% compared to 9.6%).

However, it also shows that the results of OLHAfter1 include more partitions with
the largest component that contains an average of less than 90% (and also 66%) of all
logical axioms than the results of OLH2. We can also observe that OLHAfter1 has a
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Table 7.1: Number of removed axioms: Average and Std. Dev.
Number of removed
Layers

Average Std. Dev.

0 0.11441328 0.86356016
1 9.61155006 17.04151062
2 20.34710726 26.23971333
3 29.31576065 30.28819719
4 37.4556476 32.50159397
5 44.49927078 33.33053132
6 49.88597421 34.37058167
7 53.94784691 34.55769665

Table 7.2: Results of evaluation for OHLAfter1, OHLAfter2, OHL1, OHL2 and OHL3
Heuristic #Partitions Avg. % of

biggest
Part.

<90% <66% % of
removed
Axioms

OLH1 16.52088 81.92243 83 43 0.11441
OLHAfter1 28.52141 79.31848 174 102 10.27262
OLH2 37.66584 79.34570 149 95 9.61155
OLHAfter2 37.22979 78.09416 197 103 10.42340
OLH3 61.58230 76.49270 167 114 20.34710

high standard deviation of 17.1% in the percentage of axioms removed. This is also
shown by the fact that less than five logical axioms were removed from 101 ontologies,
which is significantly more than the 29 ontologies for OLH2 .

The same observations of the relationship between OLHAfter1 and OLH2 can be seen
in the relationship between OLHAfter2 to OLH3, with the exception that the results
of OLH3 show a much higher loss of axioms, but the partitioning has more and more
components. The results of the alternative heuristics are, therefore, relatively promising.
This is particularly evident in the high number of ontologies from which only five
axioms were removed. Nevertheless, similar to OLH, a high loss of axioms is generally
observed.

7.3.5 Biconnectivity Heuristic (BH)

For the Biconnectivity and Community Detection heuristics, we found that they do not
have a linear increase in runtime. The runtime of the heuristic can increase to over
one hour for the larger ontologies. The reason for this is a method that both heuristics
use. This method is used to remove so-called bridges. To prevent the creation of
singleton components (components with only one axiom) the connected components are
recalculated after each removal of a bridge. If the connected components contain a new
singleton component, the removal is undone. Since the heuristics identify many bridges,
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this can lead to a high runtime. For this reason, we will use only the smallest 380 of the
437 ontologies from our BioPortal Snapshot by Matentzoglu and Parsia (2017) for the
following evaluations. 347 of these 380 ontologies are safe to contain axioms with the
universal role or SWRL axioms.

The results of the evaluation are as follows: On average, the ontologies are divided
into partitions of 940 components. Comparable is 14.4 components for OLH1 and 22.1
components for OLH2. This shows us an apparently very fine partitioning.

The largest component contains, on average, 77.1% of all logical axioms of the input
ontology. For comparison, the largest component, OLH1, contains 80.6% of all logical
axioms. For OLH2, this is 77.8%.

One problem seems to be the loss of logical axioms: On average, 63.5% of all logical
axioms have been removed. Even in ontologies with more than 10000 logical axioms,
41.6% of all logical axioms were removed. In comparison, OLH2 removes “only” 21.9%
of all logical axioms and even only 3.2% of all logical axioms in the ontologies with more
than 10,000 axioms. Similar to OLH, the standard deviation of the average removed
axioms is relatively high at 35%. Unfortunately, it does not show, as in OLH, that there
is a larger proportion of ontologies where only a few axioms have been removed. Only
in 18 ontologies, less than five logical axioms were removed. In comparison, these are
84 ontologies for OLH1 and 22 ontologies for OLH2.

It can be seen that BH leads to fine partitioning. It is questionable whether partitioning
with hundreds of components is useful for the user. This could be investigated in future
work by user studies. However, compared to these fine partitionings, there is often
the problem that the largest component contains the majority of all logical axioms.
Moreover, this heuristic removes a high number of logical axioms. OLH1 and OLH2
seem to be equivalent or advantageous in all the metrics discussed, especially when user
studies show that partitioning with hundreds of components is not interesting for users.

7.3.6 Community Detection Heuristic (CD)

The results of the evaluation of the Community Detection Heuristic (CD) are very similar
to the results of the evaluation of the BH. On average, the partitionings consist of a high
number of components: 506.5. The largest component contains, on average, 76.2% of
all logical axioms. On average, 47.6% of all axioms are removed (33.9% if we restrict
ourselves to ontologies with more than 10000 logical axioms). Slightly better than for
BH is that from 30 instead of 18 of all ontologies at most five axioms were removed.
Overall, the conclusion for the Community Detection Heuristic is the same as for BH.

7.3.7 Summary

Overall, the algorithm works fast without heuristics but leads to very rough partitioning.
In contrast, the heuristics often help to refine the partitions but result in a loss of
knowledge. In future work, it would be useful to find out in user studies how fine the
partitioning has to be in order to be useful for the user. In addition, the question if the
loss of knowledge (and to which extent) is acceptable should be investigated.
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Chapter 8

E-connection for other First-Order
Logic Fragments

First-order logic (FOL) over relational signatures without equality is defined in the
standard way. For every n ≥ 1, we fix a countably infinite set of relation symbols of
arity n, denoted by R, S , . . . . We also fix a countably infinite set of variables, denoted
x, y, . . . . Formulas are defined inductively by

ϕ ::= R(x1, . . . , xn) | ¬ϕ | ψ ∧ ϕ | ∃xϕ,

with R an n-ary relation symbol and n ≥ 1. The arity of a relation symbol R is denoted
arity(R). The remaining operators ∨,→,⇔,∀ are “syntactic sugar”, hence they can
be expressed using the operators from above. A variable x is bound if it occurs in a
subformula of the form ∃x.ψ, otherwise x is free. We write ϕ(x) with x = (x1, . . . , xn),
n ≥ 0, if the free relation variables of ϕ are exactly the xi. A sentence is a formula
without free variables. We define FO∧,∃ as the set of all FOL formulas with only atoms,
∧ and ∃.

The semantics of FOL formulas is defined in the standard way, too, via satisfaction
in interpretations (A, β) that consist of a structure A = (A, ·A) where A is the domain
and ·A an interpretation function that assigns to every n-ary relation symbol R a relation
RA ⊆ An, and a valuation β that maps every variable to a domain element. We write
β[x/a] to update β by fixing β(x) = a. For a formula ϕ(x1, . . . , xn) we write ϕ[a1, . . . , an]
or ϕ(x1, . . . , xn)[a1, . . . , an] to fix β(xi) = ai for i ≤ n.

Definition 1. The satisfaction of ϕ in (A, β), written A, β |= ϕ, is inductively defined as
follows:

• A, β |= R(t1, . . . , tn) iff (β(t1), . . . , β(tn)) ∈ RA

• A, β |= ¬ϕ iff A, β �|= ϕ
• A, β |= ϕ ∧ ψ iff A, β |= ϕ and A, β |= ψ
• A, β |= ∃xϕ iff there is an a ∈ A with A, β[x/a] |= ϕ

In the previous chapters, we discussed partitionings that are based on E-connections,
which in turn are originally based on abstract description systems (ADSs) to abstract
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away from a particular DL or modal logic or related formalism. The “point of entry”
for establishing an E-connection from a monolithic (DL) ontology is the partitioning
of its signature (concepts, abstract roles, concrete roles, individual names) such that
each term can be assigned to a specific part of the E-connection. For this purpose, every
DL concept, concrete role and individual name is assigned a single number i ∈ N that
represents that term’s “home part”; abstract role names r are assigned pairs (i, j) of
numbers – if i = j, then r has “home part” i; otherwise r links parts i, j.

In FOL, we only have n-ary relation symbols; there are no explicit distinction of
concept, abstract, or concrete role names. Now every n-ary relation symbol must be
assigned an n-tuple of indices. We call this an indexing. In chapter 3.1, the indexing ν is
defined as a mapping of each concept, individual name, and concrete role name to an
index i. Unary relation symbols behave like DL concepts in the original approach; their
“home part” is given by the assigned singleton tuple. Symbols of arity ≥ 2 generalize
the behavior of abstract roles: they have a “home part” if all numbers in the n-tuple
are equal or otherwise link n parts. Individual names (in FOL: constants) no longer
require separate consideration: they automatically get a “home part” when expressed
using unary relation symbols and equality.

In FOL, we have an initial I-indexing ν that assigns every n-ary relation symbol an n-
tuple of numbers. This notion is extended by variable numberings for formulas, denoted
by αϕ (for a formula ϕ). Since existential restrictions are more general, the assignment of
indices and “permitted indexings” have to be obtained from the occurrences of variables
– e.g., if ν assigns (i, j, k) to R and (�,m) to S , then αϕ is a valid variable indexing for
ϕ(x, y) = ∃z R(x, y, z) ∧ S (y, z) only if j = �. An axiom is a first-order formula of the
form ∀xψ(x), and will be indexed with the index assigned to x. These ideas are captured
by the notion of a variable indexing of the free variables in a formula:

Definition 2. Let Σ be a signature, I a set of indices and ν an I-indexing for Σ. ν
inductively induces a variable indexing αϕ for an arbitrary FOL formula ϕ:

1. If ϕ(x1, . . . , xn) = R(x1, . . . , xn) with ν(R) = (i1, . . . , in), then αϕ(x j) = i j for all
j ≤ n.

2. If ϕ(x1, . . . , xn) = ¬ψ(x1, . . . , xn), then αϕ(xi) = αψ(xi) for all i ≤ n.

3. If ϕ(x1, . . . , xn) = ψ(y1, . . . , ym) ∧ ϑ(z1, . . . , zk), then

• if xi = y j then αϕ(xi) = αψ(y j) for all i ≤ n, j ≤ m

• if xi = z j then αϕ(xi) = αψ(z j) for all i ≤ n, j ≤ k.

4. If ϕ(x1, . . . , xn) = ∃xψ(x, x1, . . . , xn), then αϕ(xi) = αψ(xi) for all i ≤ n.

The order of free variables in the first-order formulas of Definition 2 is arbitrary. It is
easy to see that there is at most one variable indexing, for each ν and ϕ. Here it becomes
clear why we omit equality in the discussed fragment of FOL: General usage of equality
would allow for formulas of the form ϕ = ∀x, y.x = y. ϕ contains no relation variable,
and therefore no unambiguous variable indexing αϕ can be defined. It is important to
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note that some forms of formulas with equality can still induce a variable indexing.
An example would be the formula ω = ∀x, y, y�.(R(x, y) ∧ R(x, y�) → y = y� which
expresses functionality of R. Each variable in ω has a unique I-indexing, which will
induce variable indexing.

Variable indexings are extended to axioms ϕ = ∀xψ(x): we call ϕ an i-axiom given
ν if there is an variable indexing αψ for ψ given ν such that αψ(x) = i. The variable
indexing αϕ is defined for a formula ϕ(x1, . . . , xn), if the indexing is valid according to
1-4.

Example 3. Fix an I so that i1, i2 ∈ I with i1 � i2. The variable indexing αϕ for the
formula ϕ(x1, x2, x3) = R(x1, x2) ∧ R(x1, x3) is defined for the I-indexing ν with ν(R) =
(i1, i2). It is easy to see that the only defined αϕ is αϕ(x1) = i1 and αϕ(x2) = αϕ(x3) = i2.
An example for a formula with no possible αψ is ψ(x1, x2, x3) = R(x1, x2) ∧ ¬R(x3, x1).
x1 occurs on both positions of R in ψ, therefore ψ would induce an αψ with αψ(x1) = i1

and αψ(x1) = i2, but i1 � i2.

ν-ontologies are defined in the same way as in Chapter 3.1:

Definition 4. Given an I-indexing ν, a ν-ontology is a set O = {Oi | i ∈ I}, each of
whose components Oi is a nonempty set of i-axioms.

The interpretation of ν-ontologies is defined analogous to the standard FOL-interpretation
metioned earlier, with the exception of the ¬-case:

Definition 5. A ν-structure A = (A,RA1 ,R
A
2 , . . .) is a structure, s.t. A =

�
i∈I Ai and

RA� ⊆ Ai1 × · · · × Ain for every n-ary relation symbol R� with � ≤ k and i1, . . . , in ∈ I.
(A, β) is a ν-interpretation, if A is a ν-structure and β is a valuation that maps every

variable to a domain element. The satisfaction relation between ν-interpretations (A, β)
and ν-indexed-formulas is defined as follows:

1. A, β |=ν R(x1, . . . , xm) if (β(x1), . . . , β(xm)) ∈ RA

2. A, β |=ν ¬ϕ(x1, . . . , xn) and β is such that β(x j) ∈ Aαϕ(x j) for all j ≤ n.

3. A, β |=ν ϕ ∧ ψ if A, β |=ν ϕ and A, β |=ν ψ
4. A, β |=ν ∃xϕ if there is a a ∈ A s.t. A, β[x/a] |=ν ϕ
Only the ¬-case needs to explicitly state β(x j) ∈ Aαϕ(x j) for all j ≤ n. This property

holds for all other cases, which can be proven via straightforward induction. This notion
is captured in the following proposition:

Proposition 6. For all A, β and ϕ(x1, . . . , xn) if A, β |=ν ϕ(x1, . . . , xn) then β(x j) ∈ Aαϕ(x j)

for j ≤ n.

A ν-interpretation (A, β) is a model of a ontology Oi if it satisfies all i-axioms in Oi

and a model for a ν-ontology O = {Oi | i ∈ I} if (A, β) |= Oi for every i ≤ n. O is
consistent if it has a model.

We capture the correspondence between simple and ν-ontologies by compatibility and
equivalence as in Section 3.2:
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Definition 7. Let O be an ontology, ν an I-indexing, and O = {Oi | i ∈ I} a ν-ontology.

1. O and O are compatible, written O ∼ O, if O = �i≤n Oi .

2. O and O are equivalent, written O ≈ O if, for all ν-interpretations (A, β), it holds
that A, β |= O iff A, β |=ν O.

To establish a link between compatibility and equivalence as for description logic in
Chapter 3.2 we first need to define domain-independence for first-order logic:

Definition 8. An FOL formula ϕ(x1, ..., xn) is domain-independent (DI) if for all struc-
tures A = (A, PA1 , P

A
2 , . . .) and for all B ⊇ A and for all (a1, ..., an) ∈ Bn:

A |= ϕ[a1, ..., an] iff (B, PA
1 , P

A
2 , ...) |= ϕ[a1, ..., an]

Domain independence is a well-known notion, particularly important in database
theory: the domain-independent fragment of FOL has the same expressivity as rela-
tional algebra, on which SQL is based, see (Abiteboul et al., 1995). While domain-
independence is undecidable (Vardi, 1981), various sufficient syntactic conditions have
been established, see (Kifer, 1988; Van Gelder and Topor, 1991).

In the context of this Thesis, we will limit ourselves to specific fragments of first-order
logic. An obvious restriction for these fragments is that it cannot contain negation
of relational axioms with arity ≥ 2. They represent a generalization of the discussed
problems with the universal role (see page 23).

A fragment of first-order logic that complies with this restriction is a logic limited to
tuple generating dependencies.

8.1 Tuple-generating Dependency

A tuple generating dependency (TGD) is a sentence in first order logic of the form:

∀X, Y.P(X,Y)→ ∃Z.Q(X, Z)

where P is a possibly empty, X, Y,Z are pairwise disjoint sets of variables, and Q is a
non-empty conjunction of relational atoms. In addition, it is easy to see that TGDs are
always domain-independent.

TGD’s were first introduced by Beeri and Vardi (1984) and provide the foundation for
Datalog+/- (Calı̀ et al., 2010). Several systems using TGD’s (Bellomarini et al., 2018;
Baget et al., 2015) and practical applications in bioinformatics and modeling complex
structures of chemical compounds have been developed (Grau et al., 2013; Mungall,
2009; Magka et al., 2012).
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8.1.1 Main Theorem

In this chapter, we want to transfer our notations and results for SHOIQ(D) (with
Keys) to TGDs. We can write TGD’s as FOL-sentences of the form:

ϕ = ∀x1, . . . , xn(ψ(x j1 , . . . , x j�)→ ω(xk1 , . . . , xk1)

with ψ being a (possibly empty) conjunction of relational atoms and ω being an
existential restriction over a conjunction of relational atoms (as ∃Z.Q(X, Z)).

This notation gives us a way to compare the expressivity of SROIQ and TGD’s. It
is easy to see, that TGD’s can express SROIQ axioms of the form C1 � . . . � Cn �
∃r1.D1 � . . . � ∃rm.Dm. The expressivity of SROIQ and TGD’s are different, but none
of them both is a subset of the other: On the one hand, TGD’s cannot express all axioms
in SROIQ, e.g., ∃r.D � ¬C. On the other hand, TGD’s allow relational atoms with
arity ≥ 2, which cannot be expressed in Description Logic.

Now we can transfer Theorem 13 to TGDs:

Theorem 9. Let O be an ontology, ν an I-indexing, O = {Oi | i ∈ I} a ν-ontology.

1. If O ∼ O, then O ≈ O.

2. If additionally O is consistent, then so is O.

The changes of the Theorem in comparison to Theorem 13 are due to the domain-
independence of TGDs.

Proof.

Ad 1. Assume that O ∼ O. Let A, β be a ν-interpretation. We need to show: A, β |= O
iff A, β |=ν O. For this purpose, we first establish the following properties:

Claim 1. A, β |= ϕ(x1, . . . , xn) iff A, β |=ν ϕ(x1, . . . , xn) for all ϕ ∈ FO∧,∃,.

Proof of Claim 1.
By induction over the structure of ϕ. The base case holds by Definition 5 and

Definition 1. All other cases can be shown by Definition 5, Definition 1, and the
induction hypothesis.

To prove A, β |= O iff A, β |=ν O it suffices to show A |= ϕ iff A |=ν ϕ for every ϕ ∈ O.
To prove this, we establish the following property:

Claim 2. For all A, for all TGDs ϕ = ∀x1, . . . , xn(ψ(x j1 , . . . , x j�) → ω(xk1 , . . . , xkm))
with { j1, . . . , j�, k1, . . . , km} = {1, . . . , n}: A |= ϕ iff A |=ν ϕ.

Proof of Claim 2.
We can omit β from the interpretation, because O andO are set of sentences. Therefore
β is not necessary to interpret the formulas in O and O (and consequently ϕ ∈ O). For
the proof we define ϕ� = ψ(x, x1, . . . , xn) for a formula of the form ϕ(x1, . . . , xn) =
∃xψ(x, x1, . . . , xn).
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A |=ν ϕ iff A |=ν ¬∃x1, . . . , xn(ψ(x j1 , . . . , x j�) ∧ ¬ω(xk1 , . . . , xkm)) (1)
iff for all a1, . . . , an ∈ A : (2)
A �|=ν (ψ(x j1 , . . . , x j�) ∧ ¬ω(xk1 , . . . , xkm))[a1, . . . , an]

iff for all (a1, . . . , an) ∈ Aαϕ� (x1) × . . . × Aαϕ� (xn) : (3)

A �|=ν (ψ(x j1 , . . . , x j�) ∧ ¬ω(xk1 , . . . , xkm))[a1, . . . , an]
iff for all a1, . . . , an ∈ Aαϕ� (x1) × . . . × Aαϕ� (xn) : (4)

A �|=ν ψ[aj1 , . . . , aj�] or A �|=ν ¬ω[ak1 , . . . , akm]
iff for all a1, . . . , an ∈ Aαϕ� (x1) × . . . × Aαϕ� (xn) : (5)

A �|=ν ψ[aj1 , . . . , aj�] or A |=ν ω[ak1 , . . . , akm]
or ap � Aαω(xt) with β(xt) = ap and p, t ≤ n

iff for all a1, . . . , an ∈ Aαϕ� (x1) × . . . × Aαϕ� (xn) : (6)

A �|=ν ψ[aj1 , . . . , aj�] or A |=ν ω[ak1 , . . . , akm]
iff for all a1, . . . , an ∈ A : (7)
A �|=ν ψ[aj1 , . . . , aj�] or A |=ν ω[ak1 , . . . , akm]

iff for all a1, . . . , an ∈ A : (8)
A �|= ψ[aj1 , . . . , aj�] or A |= ω[ak1 , . . . , akm]

iff A |= ϕ (9)

(1) by Definition 5, (2) holds by 4. by Definition 5 (no restriction to β are needed,
because ϕ is a sentence) and (3) holds by Proposition 6. (4) holds by 3. of Defini-
tion 5 and (5) holds by 2. of Definition 5. (6) holds because ap � Aαω(xt) with β(xt) =
ap and p, t ≤ n contradicts a1, . . . , an ∈ Aαϕ� (x1) × . . . × Aαϕ� (xn). (7) holds by αϕ�(x ji) =
αψ(x ji) and αϕ�(xkt) = αω�(xkt) for all i ≤ � and t ≤ m and by Proposition 6. (8) holds by
Claim 1 and (9) holds by Definition 1.

Ad 2. It suffices to show that, whenever O is consistent (and DI and compatible with
the ν-ontology O), O has a ν-model. By 1. of Theorem 9, that model then is a model of
O too.

Let A be a interpretation with A |= O and A = (A,RA1 ,R
A
2 , . . .). Then we create the

ν-interpretation B with B = (B,RB1 , . . .R
B
k ) as follows:

B = A × I
RBi = {((a1, i1), (an, in)) | (a1, . . . , an) ∈ RAi } for all Ri with i ≤ k and ν(R) = (i1, . . . , in)

We can now use B to show the desired property:

A |= O implies B |=ν O (�)

For this purpose, we introduce the following property:

Claim 3. For all ν-formulas ϕ(x1, . . . , xn) ∈ FO∧,∃, all a1, . . . , an ∈ A with:
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8.1 Tuple-generating Dependency

A |= ϕ[a1, . . . , an] iff B |=ν ϕ[(a1,αϕ(x1)), . . . , (an,αϕ(x1))]

Proof of Claim 3.

We show this property by induction over the structure of ϕ. The base case with
ϕ[a1, . . . , an] = R[a1, . . . , an] and the conjunction can be shown in a straightforward way
by applying the Definition of B and Definition 5. The other case is shown as follows:

• ϕ(x1, . . . , xn) = ∃xψ(x, x1, . . . , xn)

A |= ϕ[a1, . . . , an] iff there is an a ∈ A s.t. A |= ψ[a, a1, . . . , an] (1)
iff there is an (a, i) ∈ B s.t. A |= ψ[a, a1, . . . , an] (2)
iff there is an (a, i) ∈ B s.t. (3)
B |=ν ψ[(a,αϕ(x)), (a1,αϕ(x1)), . . . , (an,αϕ(xn))]

iff B |=ν ϕ[(a1,αϕ(x1)), . . . , (an,αϕ(x1))] (4)

(1) holds by Definition 1, (4) holds by Definition 5, (2) holds by the Definition ofB and
(3) holds by the Definition of B, the induction hypothesis and because αϕ(xi) = αψ(xi)
for all i ≤ n.

To pove property (�) it now suffices to show that A |= ϕ implies A |=ν ϕ with ϕ =
∀x1, . . . , xn(ψ(x j1 , . . . , x j�)→ ω(xk1 , . . . , xkm)) and { j1, . . . , j�, k1, . . . , km} = {1, . . . , n}

A |= ϕ iff for all a1, . . . , an ∈ A : (1)
A |= ¬ψ(x j1 , . . . , x j�) ∨ ω(xk1 , . . . , xkm)[a1, . . . , an]

iff for all a1, . . . , an ∈ A : (2)
A |= ¬ψ[aj1 , . . . , aj�] or A |= ω[ak1 , . . . , akm]

iff for all a1, . . . , an ∈ Aαϕ� (x1) × . . . × Aαϕ� (xn) : (3)

A |= ¬ψ[aj1 , . . . , aj�] or A |= ω[ak1 , . . . , akm]
iff for all a1, . . . , an ∈ Aαϕ� (x1) × . . . × Aαϕ� (xn) : (4)

A |=ν ¬ψ[(aj1 ,αϕ(x j1)), . . . , (aj� ,αϕ(x j�))] or
A |=ν ω[(ak1 ,αϕ(xk1)), . . . , (akm ,αϕ(xkm))]

iff B |=ν ϕ (5)

(1), (2) and (5) hold by Definition 1, (3) holds by Proposition 6 and (4) holds by Claim
3.
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8.1.2 Algorithm

In this section, we will discuss how an algorithm, like the algorithm in Chapter 4 can
be defined for TGDs. We will omit the proofs of correctness and maximality as the
sole purpose of this section was to sketch a possible algorithm. The first step of the
Algorithm is to define the graph G = (V, E, L), as in Algorithm 1 of Chapter 4.1.

The signature τ is a set of relational atoms with a fixed arity. We define rel(ϕ)
as the occurences of all relational atoms in ϕ, e.g. rel(∀x, y.R(x, y) → ∃z.S (y, z)) =
{R(x, y), S (y, z)}.

Algorithm 5: Partitioning an ontology O
1 Function partition(O):

input : O with signature τ
output : ν-ontology O

2 V ← {R1, . . . ,Rn | R ∈ τ with arity(R) = n};
3 E ← {(Ri, S j) | ∃ϕ ∈ O with R(x1, . . . , xn) ∈ re f (ϕ)

and S (y1, . . . , ym) ∈ re f (ϕ) and xi = y j}
4 L← fixAxiomLabels(G,O)
5 G ← (V, E, L)

6 {G1, . . . ,Gn}←
all connected components (CCs) of G with ≥ 1 axiom label

7 forall i ≤ n do Oi ← {α | α ∈ L(v, v�) for some edge (v, v�) in Gi}
8 O← (O1, . . . ,On)

9 return (O)

We give the procedure by the routine partition(O) of Algorithm 5. The routine
takes an ontology O with signature τ as input and returns a ν-ontology O so that O and
O are equivalent.

The algorithm will create the vertices R1, . . . ,Rn for each relational atom R ∈ τ with
arity(R) = n (see line 2). Therefore each vertex Ri represent the i-th position of R. After
adding the vertices we add the edges (see line 3). Vertices Ri and S j are connected if
R(x1, . . . , xn) and S (y1, . . . , ym) occur in an ϕ ∈ O with xi = y j. In the next step we add
the axioms as labels to the edges. We will set L(e) = ϕ for a fixed e ∈ Eϕ (represented
by fixAxiomLabels in line 7).

After this, the procedure is analogous to the Algorithm 1: We will calculate the
connected components of G, and we define O as the connected components and their
labels.

The addition of vertices and labels is still in linear time (given we choose a linear time
procedure for adding the labels, e.g., labeling the first edge that is created for a ϕ ∈ O).
For each variable x in a formula ϕ, we add an edge for each pair of occurrences of x in
the relational atoms in ϕ. Therefore the complexity is O(nph2) with n being the number
of ϕ ∈ O, p the number of variables in ϕ and h = rel(ϕ). If we set k =| O | then we can
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argue that the complexity is O(k3). The complexity of the rest of the algorithm can be
calculated analogously to the complexity of Algorithm 1 in Chapter 4.4. Therefore the
whole algorithm is in O(n3).

8.1.3 Summary

We showed that partitioning by E-connection could be transferred to other fragments of
FOL than SROIQ(D). The fragment we have chosen for this demonstration is a logic
only containing TGD’s. TGD’s allow for an easier transfer because of their form: They
are always DI and contain no negation of relational atoms with an arity ≥ 2. The form is
also similar to the representation of subsumption axioms in FOL.

8.1.4 Outlook

Further investigation could help to find other fragments of first-order logic to which
partitioning based on E-connection could be transferred to. Especially fragments without
equality (see page 67) and without negation of relational atoms with more than one
free variable (see page 68) are interesting, because a simple transfer of theorems and
results might be possible. These fragments can contain non-DI sentences, as observed
for SROIQ(D). Therefore an algorithm can only be defined if domain-independence
is decidable for this fragment.

A promising candidate is the unary-negation fragment of first-order logic (UNFO),
first described by ten Cate and Segoufin (2011). It embeds several description logics like
ALC.

UNFO is a fragment of FOL that only allows negation on subformulas that has at
most one free variable. UNFO formulas are given by the following grammar:

φ ::= R(X) | x = y | φ ∧ φ | φ ∨ φ | ∃x.φ | ¬φ(x)

where, in the last clause, φ has no other free variables besides (possibly) x. From
now on we write X (x) to say that X has at most one free variable x. Segoufin and ten
Cate (2013) showed that every UNFO sentence is equivalent to a UNFO sentence in
UN-normal form that is generated by the following grammar:

X (y) ::= ∃zψ(y, z) | ¬X (y) | X1(y) ∨ X2(y)

where ψ(y, z) is of the form:

∃z(τ(z) ∧ zi = y ∧
�

j∈{1...n}\{i}
φ j(z j)) (8.1)

or

∃z(τ(z) ∧
�

j∈{1...n}
φ j(z j)) (8.2)
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Chapter 8 E-connection for other First-Order Logic Fragments

The use of equality atoms is not allowed in our setting, as discussed on Page 67. The
discussed normal form allows equality in only one place, namely formula 8.1. The
equality atoms can be easily eliminated, as discussed by Jung et al. (2018).

On page 68, we discussed how negation on relational atoms with more than one
free variable implies that locality does no longer characterizes domain-independence.
The limitation of negations to subformulas with at most one free variable is the main
reason why we consider UNFO a promising candidate. We suspect that a major task
in transferring the theorems and results to UNFO will be to find an efficient way to
characterize DI.
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Chapter 9

Conclusion and Future Work

In this thesis, we investigated and evaluated the decomposition method “Partitioning
using E-connections”. During our investigation, we developed a simplified notation
and extended it to the full OWL 2, with the exception of the universal role. We have
developed a new, conceptually much simpler algorithm that is deterministic and runs in
linear rather than quadratic runtime.

We have implemented the algorithm in Java. We have developed several heuris-
tics, e.g., removing the classes that are highest in heuristics to improve the quality of
partitioning. We call the implemented tool EPartitioner1.

We have implemented extensive testing for the EPartitioner and evaluated the tool
on a large and diverse established corpus of biomedical ontologies. The evaluation has
shown that the standard algorithm leads to weak results. The resulting partitionings are
coarse, and one component often contains most of the logical axioms. The implemented
heuristics improve these results but are often accompanied by a high loss of logical
axioms.

To examine whether “Partitioning using E-connections” can be transferred to other
fragments of first-order logic, we transferred “Partitioning using E-connections” to tuple
generating dependency’s (TGD) in Chapter 8. We also discussed that the unary-negation
fragment of first-order logic (UNFO) is a promising candidate for the transfer of E-
connections. It turns out that the main problem with the transfer is not the E-connections
themselves, but safety, which is generally undecidable.

9.1 Future Work

For future work, user studies would be useful to answer the question if decompositions
of the simple algorithm without heuristics or with heuristics are useful. Questions
for the users would be e.g., how fine the decompositions should be and which loss of
logical axioms would be tolerable. The authors of this thesis have set the previous limits
according to their own opinion. Furthermore, it would be interesting to know if the pure
insight into the structure of the ontology could be helpful.

On the application side, the development of a user interface could be part of future
work. An interesting question could be how to make the different options offered by

1Repository of EPartitioner: https://github.com/sasjonge/epartition
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the EPartitioner understandable to the user. Furthermore, one could investigate how to
display the partitioning so that it is understandable for the user.

Regarding the user questions mentioned above, the question for future work is whether
the effort of further theoretical or application-related work is reasonable in relation to
the mediocre results.

On the theoretical side, among other things, the logical foundations of the Ignore Prop-
erties Heuristic (IPH) be examined. It could be investigated how to adapt the notations
and the algorithm to include the possible ignoring of global (or domain/rangeglobal)
properties. It should also be investigated how this affects the logical guarantees.

Another point for future work on the theoretical side could be the extension of the
notations and the algorithm to other fragments of FOL like UNFO. It could also be
investigated whether E-connections and partitioning based on E-connections could be
transferred to some SO features.
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Appendix A

Test Descriptions and Results

In this section, we describe the implemented Unit-Tests. The goal of our unit tests is to
test if our implementation connects the correct vertices for an axiom or subconcept. For
the tests (with the exception of the Run-Through-Example-Test) we will at first test an
“pre”-ontology Opre, which will build the basis for the tests of the different axioms and
subconcepts. Then we will test if the axiom or subconcept connects the correct vertices
in Opre by adding the relevant axiom/subconcept to the pre-ontology.

We will describe the tests for axioms before the tests of subconcepts, because the
axioms are necessary to describe and create tests (in- and output are ontologies/a set
of axioms). The order of the test (after the Run-Through-Example-Test) is based on
Section 8 (ClassExspressions) and Section 9 (Axioms) of the “OWL 2 Web Ontology
Language - Structural Specification and Functional-Style Syntax” documentation1. To
describe the subconcepts and axioms we use the Functional-Style Syntax of OWL 1.

A.1 Test of Run-Through-Example

In this section we describe the unit test with our Run-Through-Example as input. The
test is described in Table A.1.

A.2 Test of Class Expression Axioms

In section 9.1 of the “Structural Specification” axioms that allow to express relationships
between class expressions are defined. The first axioms described are subclass axioms.
In our first test, we want to test if the class expressions A and B are in the same subgraph,
if we add the axiom γ = S ubClassO f (A, B). For this we first create an ontology Opre

containing the axioms α = S ubClassO f (A, B�) and β = S ubClassO f (B, B�) and test
the algorithm with Opre as input (see Table A.2). We expect that the algorithm returns
O = {O1,O2} with O1 = {α} and O2 = {β}.
The test in Table A.3 checks if the addition of γ to Opre will force α and β into the same
subgraph.

We expect that equivalent classes, disjoint classes and disjoint union of class expres-
sions will result in the same connectivity: All their entities will be pairwise connected.

1https://www.w3.org/TR/owl2-syntax
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Table A.1: Test of run through example
Name runThroughExampleTest

Tested sub-concepts and
axioms

ObjectSomeValuesFrom,
ObjectAllValuesFrom,
ObjectIntersectionOf,
SubClassOf,
SubObjectPropertyOf

Input O = {α = S ubClassO f (A,Ob jectS omeValues.(r, B)),
β = S ubClassO f (C,Ob jectAllValues.(s, B)),
γ = S ubOb jectPropertyO f (r, s),
δ = S ubClassO f (B,Ob jectIntersec.O f (B�, B��))}

Expected Output O = {O1,O2} with O1 = {α, β, γ} and O2 = {δ}

Table A.2: Test of Opre for SubClassOf axioms
Name subClassOfPreTest

Tested sub-concepts and
axioms

SubClassOf

Input Opre = {α = S ubClassO f (A, B�),
β = S ubClassO f (B, B��)}

Expected Output O = {O1,O2} with O1 = {α} and O2 = {β}

Table A.3: Test of SubClassOf axioms
Name subClassOfTest

Tested sub-concepts and
axioms

SubClassOf

Input O = {α = S ubClassO f (A, B�),
β = S ubClassO f (B, B��),
γ = S ubClassO f (A, B)}

Expected Output O = {O}
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Table A.4: Test of EquivalentClasses axioms
Name equivalentClassesTest

Tested sub-concepts and
axioms

EquivalentClasses

Input O = {α = S ubClassO f (A, B�),
β = S ubClassO f (B, B��),
γ = EquivalentClasses(A, B)}

Expected Output O = {O}

Table A.5: Test of DisjointClasses axioms
Name disjointClassesTest

Tested sub-concepts and
axioms

DisjointClasses

Input O = {α = S ubClassO f (A, B�),
β = S ubClassO f (B, B��),
γ = Dis jointClasses(A, B)}

Expected Output O = {O}

Therefore we test them similar to subclass axioms (see Tables A.4, A.5 and A.7). For
equivalent classes axioms and disjoint classes we use the Opre tested in Table A.2. The
test of Opre for disjoint union axioms is described in Table A.6.

Additionally to the tests above we implemented tests with more than two inputs for
equivalent classes and disjoint classes axioms and with more than two classes in the
union part of the disjoint union axioms. For this tests we test and create an Opre that
will result in five components (see Table A.8). The tests for equivalent classes, disjoint
classes and disjoint union axioms are described in Tables A.9, A.10 and A.11.

Table A.6: Test of Opre for DisjointUnion axioms
Name disjointUnionPreTest

Tested sub-concepts and
axioms

SubClassOf

Input O = {α = S ubClassO f (A, B�),
β = S ubClassO f (B, B��),
γ = S ubClassO f (C, B���)}

Expected Output O = {O1,O2,O3} with O1 = {α}, O2 = {β} and
O3 = {γ}
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Table A.7: Test of DisjointUnion axioms
Name disjointUnionTest

Tested sub-concepts and
axioms

DisjointUnion

Input O = {α = S ubClassO f (A, B�),
β = S ubClassO f (B, B��),
γ = S ubClassO f (C, B���),
δ = Dis jointUnion(A, B,C)}

Expected Output O = {O}

Table A.8: Test of Opre for EquivalentClasses axioms with 5 classes
Name equivalentClassesManyPreTest

Tested sub-concepts and
axioms

SubClassOf

Input O = {α = S ubClassO f (A, A�),
β = S ubClassO f (B, B�),
γ = S ubClassO f (C,C�),
δ = S ubClassO f (D,D�),
� = S ubClassO f (E, E�)}

Expected Output O = {O1,O2,O3,O4,O5} with O1 = {α}, O2 = {β},
O3 = {γ}, O4 = {δ} and O5 = {�}

Table A.9: Test of EquivalentClasses axioms with 5 classes
Name equivalentClassesManyTest

Tested sub-concepts and
axioms

EquivalentClasses

Input O = {α = S ubClassO f (A, A�),
β = S ubClassO f (B, B�),
γ = S ubClassO f (C,C�),
δ = S ubClassO f (D,D�),
� = S ubClassO f (E, E�),
ζ = EquivalentClasses(A, B,C,D, E)}

Expected Output O = {O}
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Table A.10: Test of DisjointClasses axioms with 5 classes
Name disjointClassesManyTest

Tested sub-concepts and
axioms

DisjointClasses

Input O = {α = S ubClassO f (A, A�),
β = S ubClassO f (B, B�),
γ = S ubClassO f (C,C�),
δ = S ubClassO f (D,D�),
� = S ubClassO f (E, E�),
ζ = Dis jointClasses(A, B,C,D, E)}

Expected Output O = {O}

Table A.11: Test of DisjointUnion axioms with 5 classes
Name disjointUnionManyTest

Tested sub-concepts and
axioms

DisjointUnion

Input O = {α = S ubClassO f (A, A�),
β = S ubClassO f (B, B�),
γ = S ubClassO f (C,C�),
δ = S ubClassO f (D,D�),
� = S ubClassO f (E, E�),
ζ = Dis jointUnion(A, B,C,D, E)}

Expected Output O = {O}

89



Appendix A Test Descriptions and Results

Table A.12: Test of Opre for SubObjectPropertyOf axioms
Name subObjectPropertyOfPreTest

Tested sub-concepts and
axioms

SubObjectPropertyOf

Input O = {α = S ubOb jectPropertyO f (r, s),
β = S ubOb jectPropertyO f (r�, s�)}

Expected Output O = {O1,O2} with O1 = {α} and O2 = {β}

Table A.13: Test of SubObjectPropertyOf axioms
Name SubObjectPropertyOfTest

Tested sub-concepts and
axioms

SubObjectPropertyOf

Input O = {α = S ubOb jectPropertyO f (r, s),
β = S ubOb jectPropertyO f (r�, s�),
γ = S ubOb jectPropertyO f (r, r�)}

Expected Output O = {O}

A.3 Test of Object Property Axioms

The subobject property axioms are tested similiarly to the subclass axioms. At first
we test a pre-ontology in Table A.12. After this we test the effect of the addition of a
subobject property axiom in Table A.13

We will define the same tests (using the same Opre of Table A.12) for equivalent object
properties and disjoint object properties axioms by simply replacing SubObjectProp.
with the corresponding name, EquivalentObjectProperties for equivalent object
properties axioms (see Table A.14) and DisjointObjectProperties for disjoint
object properties axioms (see Table A.15).

Similarly to the tests for e.g. equivalent classes axioms we implemented tests with
more than two inputs for equivalent object properties and disjoint object properties
axioms. For this tests we test and create an Opre that will result in five components (see
Table A.16). The tests for equivalent classes, disjoint classes and disjoint union axioms

Table A.14: Test of EquivalentObjectProperties axioms
Name equivalentObjectPropertiesTest

Tested sub-concepts and
axioms

EquivalentObjectProperties

Input O = {α = S ubOb jectPropertyO f (r, s),
β = S ubOb jectPropertyO f (r�, s�),
γ = EquivalentOb jectProperties(r, r�)}

Expected Output O = {O}
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A.3 Test of Object Property Axioms

Table A.15: Test of DisjointObjectProperties axioms
Name disjointObjectPropertiesTest

Tested sub-concepts and
axioms

DisjointObjectProperties

Input O = {α = S ubOb jectPropertyO f (r, s),
β = S ubOb jectPropertyO f (r�, s�),
γ = Dis jointOb jectProperties(r, r�)}

Expected Output O = {O}

Table A.16: Test of Opre for EquivalentObjectProperties axioms with 5 roles
Name equivalentObjectPropertiesManyPreTest

Tested sub-concepts and
axioms

SubObjectPropertyOf

Input O = {α = S ubOb jectPropertyO f (r, r�),
β = S ubOb jectPropertyO f (s, s�),
γ = S ubOb jectPropertyO f (t, t�),
δ = S ubOb jectPropertyO f (v, v�),
� = S ubOb jectPropertyO f (w,w�)}

Expected Output O = {O1,O2,O3,O4,O5} with O1 = {α}, O2 = {β},
O3 = {γ}, O4 = {δ} and O5 = {�}

are described in Tables A.17 and A.18.
We expect that inverse object properties axioms of the form

InverseOb jectProperties(r, s)

will force the subgraphs of r0 and s1 as well as the subgraphs for r1 and s0 together. To
test this type of axioms we first create a test for Opre described in Table A.19 and then
test the described behaviour in Table A.20.

Complex role inclusions axioms of the form

S ubOb jectProp.(Ob jectPropertyChain(s, t, v), r)

connect S 0 with r0, s1 with t0, t1 with v0 and v1 with r1. Therefore the Opre (described in
Table A.21) will have one subgraph for each of this vertices. The test of the addition of ι
is described in Table A.22.

Now we will have a look at object property domain axioms. We observed that it
is sufficient to connect R0 with the class expression. Similiarly to our test method for
subclass axioms we will first show that an ontology Opre is subgraphed into two parts
(see Table A.24) and that the addition of the object property domain axiom will force
this subgraphs into one subgraph. We set Opre = {α = S ubOb jectPropertyO f (r, s), β =
S ubClassO f (A, B)} and γ = Ob jectPropertyDomain(r, A). The description of the first
test can be found in Table ?? and the test for the addition of γ can be found in Table A.2
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Table A.17: Test of EquivalentObjectProperties axioms with 5 roles
Name equivalentObjectPropertiesManyTest

Tested sub-concepts and
axioms

SubObjectPropertyOf

Input O = {α = S ubOb jectPropertyO f (r, r�),
β = S ubOb jectPropertyO f (s, s�),
γ = S ubOb jectPropertyO f (t, t�),
δ = S ubOb jectPropertyO f (v, v�),
� = S ubOb jectPropertyO f (w,w�),
ζ = EquivalentOb jectProperties(r, s, t, v,w)}

Expected Output O = {O}

Table A.18: Test of DisjointObjectProperties axioms with 5 roles
Name disjointObjectPropertiesManyTest

Tested sub-concepts and
axioms

DisjointObjectProperties

Input O = {α = S ubOb jectPropertyO f (r, r�),
β = S ubOb jectPropertyO f (s, s�),
γ = S ubOb jectPropertyO f (t, t�),
δ = S ubOb jectPropertyO f (v, v�),
� = S ubOb jectPropertyO f (w,w�),
ζ = Dis jointOb jectProperties(r, s, t, v,w)}

Expected Output O = {O}

Table A.19: Test of Opre for InverseObjectProperties axioms
Name inverseObjectPropertiesPreTest

Tested sub-concepts and
axioms

InverseObjectProperties

Input O = {α = InverseOb jectProperties(r, s),
β = InverseOb jectProperties(r�, s�)}

Expected Output O = {O1,O2} with O1 = {α} and O1 = {β}
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A.3 Test of Object Property Axioms

Table A.20: Test of InverseObjectProperties axioms
Name inverseObjectPropertiesTest

Tested sub-concepts and
axioms

InverseObjectProperties

Input O = {α = InverseOb jectProperties(r, s),
β = InverseOb jectProperties(r�, s�),
γ = InverseOb jectProperties(r, r�)}

Expected Output O = {O}

Table A.21: Test of Opre for SubObjectPropertyChain axioms
Name subObjectPropertyChainPreTest

Tested sub-concepts and
axioms

SubObjectPropertyOf,
InverseObjectProperties

Input O = {α = S ubOb jectPropertyO f (r, r�),
β = S ubOb jectPropertyO f (s, s�),
γ = S ubOb jectPropertyO f (t, t�),
δ = S ubOb jectPropertyO f (v, v�),
� = InverseOb jectProperties(r��, r),
ζ = InverseOb jectProperties(s��, s),
η = InverseOb jectProperties(t��, t),
θ = InverseOb jectProperties(v��, v�)}

Expected Output O = {O1,O2,O3,O4,O5,O6,O7,O8} with O1 = {α},
O2 = {β}, O3 = {γ}, O4 = {δ}, O5 = {�}, O6 = {ζ},
O7 = {η} and O8 = {θ}
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Table A.22: Test of SubObjectPropertyChain axioms
Name subObjectPropertyChainTest

Tested sub-concepts and
axioms

ObjectPropertyChain

Input O = {α = S ubOb jectPropertyO f (r, r�),
β = S ubOb jectPropertyO f (s, s�),
γ = S ubOb jectPropertyO f (t, t�),
δ = S ubOb jectPropertyO f (v, v�),
� = InverseOb jectProperties(r��, r),
ζ = InverseOb jectProperties(s��, s),
η = InverseOb jectProperties(t��, t),
θ = InverseOb jectProperties(v��, v�),
ι = S ubOb jectProp.(Ob jectProp.Ch.(s, t, v), r)}

Expected Output O = {O1,O2,O3,O4} with O1 = {α, β, ι}, O2 = {γ, ζ},
O3 = {δ, η} and O4 = {�, θ}

Table A.23: Test of Opre for ObjectPropertyDomain axioms
Name objectPropertyDomainPreTest

Tested sub-concepts and
axioms

SubClassOf,
SubObjectPropertyof

Input O = {α = S ubOb jectPropertyO f (r, s),
β = S ubClassO f (A, B)}

Expected Output O = {O1,O2} with O1 = {α} and O2 = {β}

Table A.24: Test of ObjectPropertyDomain axioms
Name objectPropertyDomainTest

Tested sub-concepts and
axioms

ObjectPropertyDomain

Input O = {α = S ubOb jectPropertyO f (r, s),
β = S ubClassO f (A, B),
γ = Ob jectPropertyDomain(r, A)}

Expected Output O = {O}
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A.3 Test of Object Property Axioms

Table A.25: Test of Opre for ObjectPropertyRange axioms
Name objectPropertyRangePreTest

Tested sub-concepts and
axioms

ObjectPropertyRange

Input O = {α = InverseOb jectProperties(r, s),
β = S ubClassO f (A, B),
γ = Ob jectPropertyDomain(s, B)}

Expected Output O = {O1,O2} with O1 = {α} and O2 = {β, γ}

Table A.26: Test of ObjectPropertyRange axioms
Name objectPropertyRangeTest

Tested sub-concepts and
axioms

ObjectPropertyRange

Input O = {α = InverseOb jectProperties(r, s),
β = S ubClassO f (A, B),
γ = Ob jectPropertyDomain(s, B),
δ = Ob jectPropertyDomain(s, B)}

Expected Output O = {O}

The test for object property range axioms is analogous to the test for object property
domain axioms (see Table A.26).

The last axioms of this section are the functional, inverse-functional, reflexive, ir-
reflexive, symmetric, asymmetric and transitive object properties.

Functional and inverse-functional property axioms will not add an edge to G. There-
fore we expect the partitioning of Opre (of Table A.12) and O (Opre with the addition of
the corresponding axiom) to be the same. We exemplarly describe the test for functional
object property axioms in Table A.27. The test for the inverse-functional property axiom
is analogous.

We expect that the reflexive, irreflexive, symmetric, asymmetric and transitive object
property axioms force the R1 and R0 of their property R into one subgraph.

Exemplary we describe the test for reflexive object property axioms. To test this

Table A.27: Test of FunctionalObjectProperty axioms
Name functionalObjectPropertyTest

Tested sub-concepts and
axioms

FunctionalObjectProperty

Input O = {α = S ubOb jectPropertyO f (r, s),
β = S ubOb jectPropertyO f (r�, s�),
γ = FunctionalOb jectProperty(r)}

Expected Output O = {O1,O2} with O1 = {α, γ} and O2 = {γ}
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Table A.28: Test of Opre for ReflexiveObjectProperty axioms
Name reflexiveObjectPropertyPreTest

Tested sub-concepts and
axioms

SubObjectPropertyOf,
InverseObjectProperty

Input O = {α = S ubOb jectPropertyO f (s, t),
β = InverseOb jectProperty(r, s)}

Expected Output O = {O1,O2} with O1 = {α} and O2 = {β}

Table A.29: Test of ReflexiveObjectProperty axioms
Name reflexiveObjectPropertyTest

Tested sub-concepts and
axioms

ReflexiveObjectProperty

Input O = {α = S ubOb jectPropertyO f (s, t),
β = InverseOb jectProperty(r, s),
γ = Re f lexiveOb jectProperty(s)}

Expected Output O = {O}

axiom we create

Opre = {α = InverseOb jectProperty(r, s), β = S ubOb jectPropertyO f (s, t)}

which we expect will result in two subgraphs, the test is described in Table A.28. We
expect that adding γ = Re f lexiveOb jectProperty(s) will force the subgraphs together.
The test for reflexive object property axiom is described in Table A.29.

The tests of irreflexive, symmetric, asymmetric and transitive object property axioms
are analogous (using the same Opre).

A.4 Test of Data Property Axioms

We expect that data subproperty, equivalent data properties and disjoint data properties
axioms behave similar to subclass, equivalent classes and disjoint classes axioms. There-
fore we define the tests for this axioms analougus to their corresponding class expression
axioms (see Tables A.30 - A.33).

We additionally implemented tests with more than two inputs for equivalent data
properties and disjoint data properties axioms. For this tests we test and create an Opre

that will result in five components (see Table A.34). The tests for equivalent classes,
disjoint classes and disjoint union axioms are described in Tables A.35 and A.36.

Data property domain axioms simply connect the vertex of the data property with the
vertex of the class expression. We define

Opre = {α = S ubClassO f (A, B), β = S ubDataPropertyO f (P, P�)}
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A.4 Test of Data Property Axioms

Table A.30: Test of Opre for SubDataPropertyOf axioms
Name subDataPropertyOfPropertiesPreTest

Tested sub-concepts and
axioms

SubDataPropertyOf

Input O = {α = S ubDataPropertyO f (r, r�),
β = S ubDataPropertyO f (s, s�)}

Expected Output O = {O1,O2} with O1 = {α} and O2 = {β}

Table A.31: Test of SubDataPropertyOf axioms
Name subDataPropertyOfTest

Tested sub-concepts and
axioms

SubDataPropertyOf

Input O = {α = S ubDataPropertyO f (r, r�),
β = S ubDataPropertyO f (s, s�),
γ = S ubDataPropertyO f (r, s)}

Expected Output O = {O}

Table A.32: Test of EquivalentDataProperties axioms
Name equivalentDataPropertiesTest

Tested sub-concepts and
axioms

EquivalentDataProperties

Input O = {α = S ubDataPropertyO f (r, r�),
β = S ubDataPropertyO f (s, s�),
γ = EquivalentDataProperties(r, s)}

Expected Output O = {O}

Table A.33: Test of DisjointDataProperties axioms
Name disjointDataPropertiesTest

Tested sub-concepts and
axioms

DisjointDataProperties

Input O = {α = S ubDataPropertyO f (r, r�),
β = S ubDataPropertyO f (s, s�),
γ = Dis jointDataProperties(r, s)}

Expected Output O = {O}
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Table A.34: Test of Opre for EquivalentDataProperties axioms with 5 roles
Name equivalentDataPropertiesManyPreTest

Tested sub-concepts and
axioms

SubDataPropertyOf

Input O = {α = S ubDataPropertyO f (r, r�),
β = S ubDataPropertyO f (s, s�),
γ = S ubDataPropertyO f (t, t�),
δ = S ubDataPropertyO f (v, v�),
� = S ubDataPropertyO f (w,w�)}

Expected Output O = {O1,O2,O3,O4,O5} with O1 = {α}, O2 = {β},
O3 = {γ}, O4 = {δ} and O5 = {�}

Table A.35: Test of EquivalentDataProperties axioms with 5 roles
Name equivalentDataPropertiesManyTest

Tested sub-concepts and
axioms

SubDataPropertyOf

Input O = {α = S ubDataPropertyO f (r, r�),
β = S ubDataPropertyO f (s, s�),
γ = S ubDataPropertyO f (t, t�),
δ = S ubDataPropertyO f (v, v�),
� = S ubDataPropertyO f (w,w�),
ζ = EquivalentDataProperties(r, s, t, v,w)}

Expected Output O = {O}

Table A.36: Test of DisjointDataProperties axioms with 5 roles
Name disjointDataPropertiesManyTest

Tested sub-concepts and
axioms

DisjointDataProperties

Input O = {α = S ubDataPropertyO f (r, r�),
β = S ubDataPropertyO f (s, s�),
γ = S ubDataPropertyO f (t, t�),
δ = S ubDataPropertyO f (v, v�),
� = S ubDataPropertyO f (w,w�),
ζ = Dis jointDataProperties(r, s, t, v,w)}

Expected Output O = {O}
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A.5 Test of Key Axioms

Table A.37: Test of Opre for DataPropertyDomain axioms
Name dataPropertyDomainPreTest

Tested sub-concepts and
axioms

SubClassOf,
SubDataPropertyOf

Input O = {α = S ubClassO f (A, B),
β = S ubDataPropertyO f (P, P�)}

Expected Output O = {O1,O2} with O1 = {α} and O2 = {β}

Table A.38: Test DataPropertyDomain axioms
Name dataPropertyDomainTest

Tested sub-concepts and
axioms

DataPropertyDomain

Input O = {α = S ubClassO f (A, B),
β = S ubDataPropertyO f (P, P�),
γ = DataPropertyDomain(P, A)}

Expected Output O = {O}

The test for Opre is described in Table A.37 and the test for the axiom is described in
Table A.38.

We expect that data property range axioms and functional data propertiy axioms
will not add additional connections in the constraint graph. The test (with the Opre of
Table A.37) of both axioms is described in Table A.39.

A.5 Test of Key Axioms

Key axioms will add edges between the class expression C and the vertices of the keys,
i.e. R0 for all object property expressions R and P for all data property expressions P in
the axiom. To test the implementation for this axioms we create an ontology Opre = {α =

Table A.39: Test of DataPropertyRange and FunctionalDataProperty axioms
Name rangeFunctionalDataTest

Tested sub-concepts and
axioms

DataPropertyRange,
FunctionalObjectProperty

Input O = {α = S ubClassO f (A, B),
β = S ubDataPropertyO f (P, P�),
γ = DataPropertyRange(P, dr),
δ = FunctionalDataProperty(P�)}

Expected Output O = {O1,O2} with O1 = {α} and O2 = {β, γ, δ}
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Table A.40: Test of Opre for Key axioms
Name keyPreTest

Tested sub-concepts and
axioms

SubClassOf,
SubObjectProperty,
SubDataPropertyOf

Input O = {α = S ubClassO f (A, B),
β = S ubOb jectProperty(r, s),
γ = S ubDataPropertyO f (P, P�)}

Expected Output O = {O1,O2,O3} with O1 = {α}, O2 = {β} and
O3 = {γ}

Table A.41: Test of Key axioms
Name keyTest

Tested sub-concepts and
axioms

HasKey

Input O = {α = S ubClassO f (A, B),
β = S ubOb jectProperty(r, s),
γ = S ubDataPropertyO f (P, P�),
δ = HasKey(A, (r), (P))}

Expected Output O = {O}

S ubClassO f (A, B), β = S ubOb jectProperty(r, s), γ = S ubDataPropertyO f (P, P�)}
wich will be partitioned into three partitons for each axiom (described in Table A.40).
The axiom we test in Table A.41 is δ = HasKey(C(r)(P)).

Additionally we tested key axioms with three object properties and three data proper-
ties as keys in Table A.42 and A.43.

A.6 Test of Assertion Axioms

Individual equality and individual inequality axioms will connect the subgraphs contain-
ing their entities. We will test it similiarly to SubClassOf and EquivalentClasses.
In the first test (see Table A.44), we show that two individual equality axioms with
different entities will create two subgraphs.

Now we will test in Table A.45, if the addition of the axiom γ = S ameIndividual(a, b)
will force the subgraphs into one, as expected (using the Opre of Table A.44).

Additionally we create a Opre and a test for five individuals as entities for the same
individual tests. The test for the Opre is described in Table A.46 and the test for the
axiom is described in Table A.47.

We will define analougus tests for different individual axioms. Furthermore we will
test the axioms with five instead of two entities by replacing the two entities with five.
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A.6 Test of Assertion Axioms

Table A.42: Test of Opre for Key axioms with three object properties and three data
properties

Name keyManyPreTest

Tested sub-concepts and
axioms

SubClassOf,
SubObjectProperty,
SubDataPropertyOf

Input O = {α = S ubClassO f (A, B),
β = S ubOb jectProperty(r, r�),
γ = S ubOb jectProperty(s, s�),
δ = S ubOb jectProperty(t, t�),
� = S ubDataPropertyO f (P, P�),
ζ = S ubDataPropertyO f (P2, P�2),
η = S ubDataPropertyO f (P3, P�3)}

Expected Output O = {O1,O2,O3,O4,O5,O6,O7} with O1 = {α},
O2 = {β}, O3 = {γ}, O4 = {δ}, O5 = {�}, O6 = {ζ}, and
O7 = {η}

Table A.43: Test of Key axioms with three object properties and three data properties
Name keyManyTest

Tested sub-concepts and
axioms

HasKey

Input O = {α = S ubClassO f (A, B),
β = S ubOb jectProperty(r, r�),
γ = S ubOb jectProperty(s, s�),
δ = S ubOb jectProperty(t, t�),
� = S ubDataPropertyO f (P, P�),
ζ = S ubDataPropertyO f (P2, P�2),
η = S ubDataPropertyO f (P3, P�3),
δ = HasKey(A, (r, s, t), (P, P2, P3))}

Expected Output O = {O}

Table A.44: Test of Opre for SameIndividual axioms
Name sameIndividualPreTest

Tested sub-concepts and
axioms

SameIndividual

Input Opre = {α = S ameIndividual(a, a�),
β = S ameIndividual(b, b�)}

Expected Output O = {O1,O2} with O1 = {α} and O2 = {β}
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Table A.45: Test of SameIndividual axioms
Name sameIndividualTest

Tested sub-concepts and
axioms

SameIndividual

Input Opre = {α = S ameIndividual(b, b�),
β = S ameIndividual(a, a�),
γ = S ameIndividual(a, b)}

Expected Output O = {O}

Table A.46: Test of Opre for SameIndividual axioms with five individuals
Name sameIndividualManyPreTest

Tested sub-concepts and
axioms

SameIndividual

Input Opre = {α = S ameIndividual(a, a�),
β = S ameIndividual(b, b�),
γ = S ameIndividual(c, c�),
δ = S ameIndividual(d, d�),
� = S ameIndividual(e, e�)}

Expected Output O = {O1,O2} with O1 = {α}, O1 = {β}, O1 = {γ},
O1 = {δ} and O2 = {�}

Table A.47: Test of SameIndividual axioms with five individuals
Name sameIndividualManyTest

Tested sub-concepts and
axioms

SameIndividual

Input Opre = {α = S ameIndividual(a, a�),
β = S ameIndividual(b, b�),
γ = S ameIndividual(c, c�),
δ = S ameIndividual(d, d�),
� = S ameIndividual(e, e�),
θ = S ameIndividual(a, b, c, d, e)}

Expected Output O = {O}
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A.6 Test of Assertion Axioms

Table A.48: Test of Opre for ClassAssertion axioms
Name classAssertionPreTest

Tested sub-concepts and
axioms

SubClassOf,
SameIndividual

Input Opre = {α = S ubClassO f (A, B),
β = S ameIndividual(a, b)}

Expected Output O = {O1,O2} with O1 = {α} and O2 = {β}

Table A.49: Test of ClassAssertion axioms
Name classAssertionTest

Tested sub-concepts and
axioms

ClassAssertion

Input Opre = {α = S ubClassO f (A, B),
β = S ameIndividual(a, b),
γ = ClassAssertion(A, a)}

Expected Output O = {O}

Class assertions axioms create a edge between the class and the individual of the
assertion. We expect the subgraphs of the class and the individual to fall together.
Therefore we define and test the pre-ontology Opre = {α = S ubClassO f (A, B), β =
S ameIndividual(a, b)} and the axiom γ = ClassAssertion(A, a) in Table A.48 and A.49.

We expect positive and negative object property assertions with the the property R
and the individuals a, b to force the subgraphs of R0 and a but also R1 and b together.
It should also add an axiom to the partiton of a and r0. For our test we define the
“pre’-ontology in such a way, that all four vertices r0, r1, a and b have their own subgraph.
The test for the corresponding Opre is described in Table A.50. We expect, that adding
the axiom � = Ob jectPropertyAssertion(r, a, b) will connect the partiton of β and δ but
also the subgraphs of γ and � (see Table A.51).

Table A.50: Test of Opre for ObjectPropertyAssertion axioms
Name objectPropertyAssertionPreTest

Tested sub-concepts and
axioms

SubObjectPropertyOf,
SameIndividual

Input Opre = {α = S ubOb jectPropertyO f (r, s),
β = OWLInverseOb jectProperties(t, s),
γ = S ameIndividual(a, a�),
δ = S ameIndividual(b, b�)}

Expected Output O = {O1,O2,O3,O4} with O1 = {α}, O2 = {β},
O3 = {γ} and O4 = {δ}
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Table A.51: Test of ObjectPropertyAssertion axioms
Name objectPropertyAssertionTest

Tested sub-concepts and
axioms

ObjectPropertyAssertion

Input Opre = {α = S ubOb jectPropertyO f (r, s),
β = S ubOb jectPropertyO f (s, t),
γ = S ameIndividual(a, a�),
δ = S ameIndividual(b, b�),
� = Ob jectPropertyAssertion(r, a, b)}

Expected Output O = {O1,O2} with O1 = {α, δ, �} and O2 = {β, γ}

Table A.52: Test of Opre for DataPropertyAssertion axioms.
Name dataPropertyAssertionPreTest

Tested sub-concepts and
axioms

SameIndividual,
SubDataPropertyOf

Input O = {α = S ameIndividual(a, b),
β = S ubDataPropertyO f (P, P�)}

Expected Output O = {O1,O2} with O1 = {α} and O2 = {β}

The test for negative object property axioms is analogous (using the same Opre).

Positive data property axioms connect the subgraph of their source individiual with
their data property expression. We define and describe the test of Opre in Table A.52
(v is a arbitary value, like the string “test”) and the test of the data property axiom in
Table A.53.

The test of negative data property assertion is implemented analogous (using the same
Opre).

Table A.53: Test DataPropertyAssertion axioms
Name dataPropertyAssertionTest

Tested sub-concepts and
axioms

DataPropertyAssertion

Input O = {α = S ameIndividual(a, b),
β = S ubDataPropertyO f (P, P�),
γ = DataPropertyAssertion(P, a, v)}

Expected Output O = {O}
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A.7 Test of Propositional Connectives and Enumeration of Individuals

Table A.54: Test of Opre for ObjectIntersectionOf
Name objectInterSectionPreTest

Tested sub-concepts and
axioms

ClassAssertion

Input O = {α = ClassAssertion(B�, a),
β = ClassAssertion(B��, b)}

Expected Output O = {O1,O2} with O1 = {α} and O2 = {β}

Table A.55: Test of ObjectIntersectionOf
Name objectInterSectionTest

Tested sub-concepts and
axioms

ObjectIntersectionOf

Input O = {α = ClassAssertion(B�, a),
β = ClassAssertion(B��, b),
γ = S ubClassO f (B�,Ob jectIntersec.(B��))}

Expected Output O = {O}

A.7 Test of Propositional Connectives and
Enumeration of Individuals

In section 8.1 of the “Structural Specification” propositional connectives and enumeration
of individuals are described. This include ObjectIntersectionOf, ObjectUnionOf
and ObjectComplementOf. All this subconcepts have in common that they will
force their entities to be in the same subgraph. To test this subconcepts, we will
create an ontology Opre containing the axioms α = ClassAssertion(B�, a) and β =
ClassAssertion(B��, b). We expect that the algorithm will create two partitons contain-
ing either ClassAssertion(B, a) or ClassAssertion(C, b) with Opre as input. The test
for this Opre is described in Table A.54 For this test we add an axiom of the form
γ = {S ubClassO f (A,C} to the ontology, with A being a new Class Expression and C
being the tested subconcept, e.g. C = Ob jectIntersectionO f (B�, B��). γ has the form
S ubClassO f (B�,Ob jectComplementO f (B��)) for ObjectComplementOf. The tests are
described in Table A.55, A.56 and A.57.
ObjectOneOf is the only subconcept in Section 8.1 which entities are Individuals

and not class expressions. We use the Opre of Table A.54 and set

γ = S ubClassO f (A,Ob jectOneO f (a, b))

.
Additionally to the normal tests for object intersections, union and enumeration of

individuals (ObjectOneOf) we add tests with five entities in the tested subconcept. The
tests are described in Table A.59 - A.62.
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Table A.56: Test of ObjectUnionOf
Name objectUnionOfTest

Tested sub-concepts and
axioms

ObjectUnionOf

Input O = {α = ClassAssertion(B�, a),
β = ClassAssertion(B��, b),
γ = S ubClassO f (A,Ob jectUnionO f (B�, B��))}

Expected Output O = {O}

Table A.57: Test of ObjectComplementOf
Name objectComplementOfTest

Tested sub-concepts and
axioms

ObjectComplementOf

Input O = {α = ClassAssertion(B�, a),
β = ClassAssertion(B��, b),
γ = S ubClassO f (A,Ob jectCompl.(B�, B��))}

Expected Output O = {O}

Table A.58: Test of ObjectOneOf
Name objectOneOfTest

Tested sub-concepts and
axioms

ObjectOneOf

Input O = {α = ClassAssertion(B�, a),
β = ClassAssertion(B��, b),
γ = S ubClassO f (A,Ob jectOneO f (a, b))}

Expected Output O = {O}

Table A.59: Test of Opre for ObjectIntersectionOf with five classes
Name objectInterSectionManyPreTest

Tested sub-concepts and
axioms

ClassAssertion

Input O = {α = ClassAssertion(A, a),
β = ClassAssertion(B, b),
γ = ClassAssertion(C, c),
δ = ClassAssertion(D, d),
� = ClassAssertion(E, e)}

Expected Output O = {O1,O2,O3,O4,O5} with O1 = {α}, O2 = {β},
O3 = {γ}, O4 = {δ} and O5 = {�}
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A.7 Test of Propositional Connectives and Enumeration of Individuals

Table A.60: Test of ObjectIntersectionOf with five classes
Name objectInterSectionOfManyTest

Tested sub-concepts and
axioms

ClassAssertion

Input O = {α = ClassAssertion(A, a),
β = ClassAssertion(B, b),
γ = ClassAssertion(C, c),
δ = ClassAssertion(D, d),
� = ClassAssertion(E, e),
γ = S ubClassO f (A�,Ob jectInter.(A, B,C,D, E))}

Expected Output O = {O}

Table A.61: Test of ObjectUnionOf with five classes
Name objectUnionOfManyTest

Tested sub-concepts and
axioms

ClassAssertion

Input O = {α = ClassAssertion(A, a),
β = ClassAssertion(B, b),
γ = ClassAssertion(C, c),
δ = ClassAssertion(D, d),
� = ClassAssertion(E, e),
γ = S ubClassO f (A�,Ob jectUn.(A, B,C,D, E))}

Expected Output O = {O}

Table A.62: Test of ObjectUnionOf with five classes
Name objectUnionOfManyPreTest

Tested sub-concepts and
axioms

ClassAssertion

Input O = {α = ClassAssertion(A, a),
β = ClassAssertion(B, b),
γ = ClassAssertion(C, c),
δ = ClassAssertion(D, d),
� = ClassAssertion(E, e),
γ = S ubClassO f (A�,Ob jectUn.(A, B,C,D, E))}

Expected Output O = {O}
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Table A.63: Test of Opre for ObjectSomeValuesFrom
Name objectSomeValuesFromPreTest

Tested sub-concepts and
axioms

SubClassOf,
ObjectPropertyDomain,
InverseObjectProperties(r,r’)

Input O = {α = S ubClassO f (A, A�),
β = Ob jectPropertyDomain(r, A��),
γ = InverseOb jectProperties(r�, r),
δ = S ubClassO f (B, B�)}

Expected Output O = {O1,O2,O3,O4} with O1 = {α}, O2 = {β},
O3 = {γ} and O4 = {δ}

Table A.64: Test of ObjectSomeValuesFrom
Name objectSomeValuesFromTest

Tested sub-concepts and
axioms

ObjectSomeValuesFrom

Input O = {α = S ubClassO f (A, A�),
β = Ob jectPropertyDomain(r, A��),
γ = InverseOb jectProperties(r�, r),
δ = S ubClassO f (B, B�),
� = S ubClassO f (A,Ob jectS omeVal.(r, A))}

Expected Output O = {O1,O2} with O1 = {α, β, �} and O2 = {γ, δ}

A.8 Test of Object Property Restrictions

Existential, universal object property quantification as well as minimum, maximum and
exact object property cardinality restriction will connect subgraphs similarly: They will
connect the subgraph of the sub concept C with the subgraph of R0 for the respective
property R and the subgraph of R1 for the property R with the concept A of the sub
concept (e.g. ∃R.B).

The axiom we want to test is � = S ubClassO f (A,Ob jectS omeValuesFrom(r, B)).
To test this axiom we create a Opre that splits into four subgraphs, each containing either
A, r0, r1 and B. The addition of δ will force the subgraph of A and r0 as well as the
subgraphs of r1 and B together (see Table A.63). The test for the addition of � can be
found in Table A.64.

The tests for universal object property quantification as well as minimum, maximum
and exact object property cardinality restriction are analogous (replacing ObjectSomeVal-
uesFrom with the corresponding axiom type).

Object property cardinality restriction without class expression are tested with the
Opre of Table A.65. Exemplarly we describe the test for minimum object property
cardinality restriction in Table A.66. The test for maximum and exact object property
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A.9 Test of Data Property Restrictions

Table A.65: Test of Opre for ObjectMinCardinality with no class expression
Name objectMinCardinalityNoClassExpressionPreT.

Tested sub-concepts and
axioms

SubClassOf,
ObjectPropertyDomain

Input O = {α = S ubClassO f (A, A�),
β = Ob jectPropertyDomain(r, A��)}

Expected Output O = {O1,O2} with O1 = {α} and O2 = {β}

Table A.66: Test of ObjectMinCardinality with no class expression
Name objectMinCardinalityNoClassExpressionTest

Tested sub-concepts and
axioms

SubClassOf,
ObjectPropertyDomain

Input O = {α = S ubClassO f (A, A�),
β = Ob jectPropertyDomain(r, A��),
� = S ubClassO f (A,Ob jectMinCard.(r, 2))}

Expected Output O = {O}

cardinality restrictions are analogous.
Another form of object property restrictions are individual value restriction axioms.

The tests for this axiom type is defined similiarly to the tests for existential object
property quantification. The Opre test is defined in Table A.67 and the test for the axiom
type is defined in Table A.68.

Self-restriction axioms will connect R0 and R1 for their entity R. We define a Opre

that has two subgraphs containing either R0 or R1 (the test for this Opre is described in
Table A.69). We test self-restriction axioms by adding γ = Ob jectHasS el f (r) to Opre.
The test is described in Table A.70.

A.9 Test of Data Property Restrictions

Existential, universal, literal data property restictions as well as minimum, maximum
and exact data property cardinality restrictions all add only a connection between the
subconcept C and the data property P.

The addition of a axiom of the form

β = S ubClassO f (A,DataS omeValuesFrom(P, xsd : integer)

will only add a connection between the vertices for A, DataS omeV.(P, xsd : integer)
and P. The first axiom containing DataS omeValuesFrom(P, xsd : integer) will add the
connection between DataS omeValuesFrom(P, xsd : integer) and P. Therefore the only
meaningful test is, to test if the axiom βwill be added to the subgraph of P. Consequently
Opre will only contain the axiom α = S ubDataPropertyO f (P, P�). The test for Opre is
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Table A.67: Test of Opre for ObjectHasValue
Name objectHasValuePreTest

Tested sub-concepts and
axioms

SubClassOf,
ObjectPropertyDomain,
InverseObjectProperties(r,r’),
SameIndividual

Input O = {α = S ubClassO f (A, A�),
β = Ob jectPropertyDomain(r, A��),
γ = InverseOb jectProperties(r�, r),
δ = S ameIndividual(b, b�)}

Expected Output O = {O1,O2,O3,O4} with O1 = {α}, O2 = {β},
O3 = {γ} and O4 = {δ}

Table A.68: Test of ObjectHasValue
Name objectHasValueTest

Tested sub-concepts and
axioms

ObjectHasValue

Input O = {α = S ubClassO f (A, A�),
β = Ob jectPropertyDomain(r, A��),
γ = InverseOb jectProperties(r�, r),
δ = S ameIndividual(b, b�),
� = S ubClassO f (A,Ob jectHasValue(r, b))}

Expected Output O = {O1,O2} with O1 = {α, β, �} and O2 = {γ, δ}

Table A.69: Test of Opre for ObjectHasSelf
Name objectHasSelfPreTest

Tested sub-concepts and
axioms

ObjectPropertyDomain,
InverseObjectProperties

Input O = {α = Ob jectPropertyDomain(r, A),
β = InverseOb jectProperties(r�, r)}

Expected Output O = {O1,O2} with O1 = {α} and O2 = {β}
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A.9 Test of Data Property Restrictions

Table A.70: Test of ObjectHasSelf
Name objectHasSelfTest

Tested sub-concepts and
axioms

ObjectHasSelf

Input O = {α = Ob jectPropertyDomain(r, A),
β = InverseOb jectProperties(r�, r),
γ = Ob jectHasS el f (r)}

Expected Output O = {O}

described in Table A.71 and the description of the test for the addition of β can be found
in Table A.72.

111



Appendix A Test Descriptions and Results

Table A.71: Test of Opre for DataSomeValuesFrom
Name dataSomeValuesFromPreTest

Tested sub-concepts and
axioms

SubDataPropertyOf

Input O = {α = S ubDataPropertyO f (P, P�)}
Expected Output O = {O}

Table A.72: Test of DataSomeValuesFrom
Name dataSomeValuesFromTest

Tested sub-concepts and
axioms

DataSomeValuesFrom

Input O = {α = S ubDataPropertyO f (P, P�),
β = S ubClassO f (A,DataS omeV.(P, xsd : int.)}

Expected Output O = {O}

All other data property restriction tests are analogous (using the same Opre).

A.10 Test of datatype definition

The handling of datatype definition axioms is a special case. It will not add additional
connections into the constraint graph, therefore we will not define additional tests for
this axiom type

A.11 Tests with Top as Input

Additional special case tests for Top and Bottom (in OWL they are called owl:Thing and
owl:Nothing) as input were implemented. For this tests we take the previous described
tests, with the exception of the “Many”-tests, and replace the inputs with owl:Thing or
owl:Nothing. The goal of this tests is to see if the implementation can handle this cases
(without throwing an exception) and if they are handled correctly.

This tests are expecially necessary, because we will often not create an extra vertex
for Top or Bottom if they are not necessary. The only exception to this are key axioms.

A.12 Results

The test results can be found in Table A.73. All tests were succesfull.
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A.12 Results

Table A.73: Test Results
Name of Test Duration Success

Class: RunThroughExampleTest
runThroughExampleTest() 16ms �

Class: ClassExpressionAxiomsTest
subClassOfPreTest() 6ms �
subClassOfTest() 2ms �
equivalentClassesTest() 7ms �
disjointClassesTest() 3ms �
disjointUnionPreTest() 9ms �
disJointUnionTest() 5ms �
equivalentClassesManyPreTest() 10ms �
equivalentClassesManyTest() 6ms �
disjointClassesManyTest() 4ms �
disjointUnionManyTest() 5ms �

Class: ObjectPropertyAxiomsTest
subObjectPropertyOfPreTest() 19ms �
subObjectPropertyOfTest() 7ms �
subObjectPropertyChainPreTest() 17ms �
subObjectPropertyChainTest() 13ms �
equivalentObjectPropertiesTest() 13ms �
disjointObjectPropertiesTest() 3ms �
equivalentObjectPropertiesManyPreTest() 15ms �
equivalentObjectPropertiesManyTest() 3ms �
disjointObjectPropertiesManyTest() 28ms �
inverseObjectPropertiesPreTest() 6ms �
inverseObjectPropertiesTest() 3ms �
objectPropertyDomainPreTest() 14ms �
objectPropertyDomainTest() 3ms �
objectPropertyRangeTest() 5ms �
functionalObjectPropertyTest() 29ms �
reflexiveObjectPropertyPreTest() 6ms �
reflexiveObjectPropertyTest() 10ms �
irreflexiveObjectPropertyTest() 10ms �
symmetricObjectPropertyTest() 12ms �
asymmetricObjectPropertyTest() 17ms �
transitiveObjectPropertyTest() 21ms �

Class: DataPropertyAxiomsTest
subDataPropertyOfPreTest() 34ms �
subDataPropertyOfTest() 10ms �
equivalentDataPropertiesTest() 8ms �
disjointDataPropertiesTest() 14ms �
dataPropertyDomainPreTest() 17ms �
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dataPropertyDomainTest() 30ms �
rangeFunctionalDataTest() 40ms �
equivalentDataPropertiesManyPreTest() 32ms �
equivalentDataPropertiesManyTest() 281ms �
disjointDataPropertiesManyTest() 30ms �

Class: KeyAxiomsTest
keyPreTest() 3ms �
keyTest() 2ms �
keyManyPreTest() 20ms �
keyManyTest() 8ms �

Class: AssertionAxiomsTest
sameIndividualPreTest() 14ms �
sameIndividualTest() 7ms �
differentIndividualsPreTest() 17ms �
differentIndividualsTest() 5ms �
classAssertionPreTest() 14ms �
classAssertionTest() 23ms �
objectPropertyAssertionPreTest() 29ms �
objectPropertyAssertionTest() 23ms �
dataPropertyAssertionPreTest() 7ms �
dataPropertyAssertionTest() 34ms �
negativeObjectPropertyAssertionTest() 80ms �
negativeDataPropertyAssertionTest() 18ms �
sameIndividualManyPreTest() 14ms �
sameIndividualManyTest() 12ms �
differentIndividualsManyTest() 5ms �

Class: ConnectivesAndEnumerationTest
objectIntersectionPreTest() 8ms �
objectIntersectionTest() 4ms �
objectUnionTest() 2ms �
objectComplementOfTest() 5ms �
objectOneOfTest() 2ms �
objectIntersectionManyPreTest() 14ms �
objectIntersectionManyTest() 6ms �
objectUnionManyTest() 6ms �
objectOneOfManyTest() 23ms �

Class: ObjectPropertyRestrictionTest
objectSomeValuesFromPreTest() 11ms �
objectSomeValuesFromTest() 7ms �
objectAllValuesFromTest() 18ms �
objectMinCardinalityTest() 17ms �
objectMaxCardinalityTest() 4ms �
objectExactCardinalityTest() 18ms �
objectMinCardinalityNoClassExpressionPreTest() 9ms �
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objectMinCardinalityNoClassExpressionTest() 3ms �
objectMaxCardinalityNoClassExpressionTest() 12ms �
objectExactCardinalityNoClassExpressionTest() 22ms �
objectHasValuePreTest() 16ms �
objectHasValueTest() 21ms �
objectHasSelfPreTest() 2ms �
objectHasSelfTest() 5ms �

Class: DataPropertyRestrictionTest
dataSomeValuesFromPreTest() 1ms �
dataSomeValuesFromTest() 12ms �
dataAllValuesFromTest() 12ms �
dataMinCardinalityTest() 2ms �
dataMaxCardinalityTest() 4ms �
dataExactCardinalityTest() 11ms �
dataMinCardinalityTestNoDataRange() 6ms �
dataMaxCardinalityTestNoDataRange() 13ms �
dataExactCardinalityTestNoDataRange() 2ms �
dataHasValueTest() 7ms �

Class: TopClassExpressionAxiomsTest
subClassOfWithTopSubTest() 11ms �
subClassOfWithTopSuperTest() 5ms �
equivalentClassesWithTopTest() 8ms �
equivalentClassesWithTopTest2() 3ms �
disjointClassesWithTopTest() 8ms �
disJointUnionWithTopInUnionTest() 3ms �
disJointUnionWithTopAsClassTest() 5ms �

Class: TopObjectPropertyAxiomsTest
objectPropertyRangeWithTopTest() 20ms �
objectPropertyDomainWithTopTest() 17ms �

Class: TopDataPropertyAxiomsTest
dataPropertyDomainWithTopTest() 9ms �

Class: TopKeyAxiomsTest
keyWithTopTest() 30ms �

Class: TopAssertionAxiomsTest
classAssertionWithTopTest() 10ms �

Class: TopConnectivesAndEnumerationTest
objectComplementOfWithTopTest() 4ms �
objectUnionWithTopTest() 7ms �
objectIntersectionWithTopTest() 5ms �

Class: TopObjectPropertyRestrictionTest
objectAllValuesFromWithTopTest() 12ms �
objectSomeValuesFromWithTopTest() 11ms �
objectMinCardinalityWithTopTest() 11ms �
objectMaxCardinalityWithTopTest() 4ms �
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objectExactCardinalityWithTopTest() 23ms �
Class: BottomClassExpressionAxiomsTest

subClassOfWithBottomSubTest() 14ms �
subClassOfWithBottomSuperTest() 13ms �
equivalentClassesWithBottomTest() 32ms �
equivalentClassesWithBottomTest2() 31ms �
disjointClassesWithBottomTest() 22ms �
disJointUnionWithBottomAsClassTest() 18ms �
disJointUnionWithBottomInUnionTest() 67ms �

Class: BottomObjectPropertyAxiomsTest
objectPropertyDomainWithBottomTest() 14ms �
objectPropertyRangeWithBottomTest() 12ms �

Class: BottomDataPropertyAxiomsTest
dataPropertyDomainWithBottomTest() 10ms �

Class: BottomKeyAxiomsTest
keyWithBottomTest() 7ms �

Class: BottomAssertionAxiomsTest
classAssertionWithBottomTest() 13ms �

Class:
BottomConnectivesAndEnumerationTest
objectComplementOfWithBottomTest() 23ms �
objectIntersectionWithBottomTest() 21ms �
objectUnionWithBottomTest() 16ms �

Class: BottomObjectPropertyRestrictionTest
objectSomeValuesFromWithBottomTest() 23ms �
objectMinCardinalityWithBottomTest() 29ms �
objectMaxCardinalityWithBottomTest() 20ms �
objectAllValuesFromWithBottomTest() 22ms �
objectExactCardinalityWithBottomTest() 27ms �
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Appendix B

Constraint Graphs

B.1 Constraint Graph of Koala

Fig. B.1: Constraint Graph of the Koala Ontology
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B.1 Constraint Graph of Koala
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B.2 Constraint Graph of the modified Koala by
Vescovo et al. (2019)

Fig. B.2: Constraint Graph of the Koala Ontology
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